Comparison of Phylogeny, Venom Composition and Neutralization by Antivenom in Diverse Species of Bothrops Complex
Tóm tắt
Từ khóa
Tài liệu tham khảo
WHO (2007) Rabies and envenomings. A neglected public health issue. Available: <ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://whqlibdoc.who.int/publications/2007/9789241563482_eng.pdf" xlink:type="simple">http://whqlibdoc.who.int/publications/2007/9789241563482_eng.pdf</ext-link>
A Kasturiratne, 2008, The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths, PLoS Med, 5, e218, 10.1371/journal.pmed.0050218
Ministério-da-Saúde (2001) Manual de diagnóstico e tratamento de acidentes por animais peçonhentos. 2nd ed. Brasília: Fundação Nacional de Saúde.
Brazil V (1918) Do envenenamento ofídico e seu tratamento. Collectanea de Trabalhos (1901–1917) - Instituto Butantan. São Paulo: Typographia do Diário Official. pp. 31–52.
JJ Calvete, 2007, Snake venomics. Strategy and applications, J Mass Spectrom, 42, 1405, 10.1002/jms.1242
JJ Calvete, 2013, Snake venomics: From the inventory of toxins to biology, Toxicon
JJ Calvete, 2011, Proteomic tools against the neglected pathology of snake bite envenoming, Expert Rev Proteomics, 8, 739, 10.1586/epr.11.61
JJ Calvete, 2009, Venoms, venomics, antivenomics, FEBS Lett, 583, 1736, 10.1016/j.febslet.2009.03.029
JM Gutiérrez, 2009, Snake venomics and antivenomics: Proteomic tools in the design and control of antivenoms for the treatment of snakebite envenoming, J Proteomics, 72, 165, 10.1016/j.jprot.2009.01.008
JM Gutiérrez, 2011, Antivenoms for snakebite envenomings, Inflamm Allergy Drug Targets, 10, 369, 10.2174/187152811797200669
D Pla, 2012, Second generation snake antivenomics: comparing immunoaffinity and immunodepletion protocols, Toxicon, 60, 688, 10.1016/j.toxicon.2012.04.342
JJ Calvete, 2010, Antivenomic assessment of the immunological reactivity of EchiTAb-Plus-ICP, an antivenom for the treatment of snakebite envenoming in sub-Saharan Africa, Am J Trop Med Hyg, 82, 1194, 10.4269/ajtmh.2010.09-0733
A Alape-Girón, 2008, Snake venomics of the lancehead pitviper Bothrops asper: geographic, individual, and ontogenetic variations, J Proteome Res, 7, 3556, 10.1021/pr800332p
A Alape-Girón, 2009, Studies on the venom proteome of Bothrops asper: perspectives and applications, Toxicon, 54, 938, 10.1016/j.toxicon.2009.06.011
JJ Calvete, 2009, Snake venomics and antivenomics of Bothrops colombiensis, a medically important pitviper of the Bothrops atrox-asper complex endemic to Venezuela: Contributing to its taxonomy and snakebite management, J Proteomics, 72, 227, 10.1016/j.jprot.2009.01.005
JJ Calvete, 2011, Snake population venomics and antivenomics of Bothrops atrox: Paedomorphism along its transamazonian dispersal and implications of geographic venom variability on snakebite management, J Proteomics, 74, 510, 10.1016/j.jprot.2011.01.003
JM Gutiérrez, 2008, Snake venomics of the Lesser Antillean pit vipers Bothrops caribbaeus and Bothrops lanceolatus: correlation with toxicological activities and immunoreactivity of a heterologous antivenom, J Proteome Res, 7, 4396, 10.1021/pr8003826
V Núñez, 2009, Snake venomics and antivenomics of Bothrops atrox venoms from Colombia and the Amazon regions of Brazil, Perú and Ecuador suggest the occurrence of geographic variation of venom phenotype by a trend towards paedomorphism, J Proteomics, 73, 57, 10.1016/j.jprot.2009.07.013
RS Rodrigues, 2012, Combined snake venomics and venom gland transcriptomic analysis of Bothropoides pauloensis, J Proteomics, 75, 2707, 10.1016/j.jprot.2012.03.028
AK Tashima, 2008, Snake venomics of the Brazilian pitvipers Bothrops cotiara and Bothrops fonsecai. Identification of taxonomy markers, J Proteomics, 71, 473, 10.1016/j.jprot.2008.07.007
JW Fox, 2006, Comparison of indirect and direct approaches using ion-trap and Fourier transform ion cyclotron resonance mass spectrometry for exploring viperid venom proteomes, Toxicon, 47, 700, 10.1016/j.toxicon.2006.01.022
EN Baramova, 1989, Degradation of extracellular matrix proteins by hemorrhagic metalloproteinases, Archives of Biochemistry and Biophysics, 275, 63, 10.1016/0003-9861(89)90350-0
M Ohler, 2010, The Venomics of Bothrops alternatus is a Pool of Acidic Proteins with Predominant Hemorrhagic and Coagulopathic Activities, Journal of Proteome Research, 9, 2422, 10.1021/pr901128x
RH Valente, 2009, Bothrops insularis venomics: a proteomic analysis supported by transcriptomic-generated sequence data, J Proteomics, 72, 241, 10.1016/j.jprot.2009.01.001
A Zelanis, 2011, Bothrops jararaca venom proteome rearrangement upon neonate to adult transition, Proteomics, 11, 4218, 10.1002/pmic.201100287
C Correa-Netto, 2010, Immunome and venome of Bothrops jararacussu: a proteomic approach to study the molecular immunology of snake toxins, Toxicon, 55, 1222, 10.1016/j.toxicon.2009.12.018
M Kohlhoff, 2012, Exploring the proteomes of the venoms of the Peruvian pit vipers Bothrops atrox, B. barnetti and B. pictus, J Proteomics, 75, 2181, 10.1016/j.jprot.2012.01.020
KC Cardoso, 2010, A transcriptomic analysis of gene expression in the venom gland of the snake Bothrops alternatus (urutu), BMC Genomics, 11, 605, 10.1186/1471-2164-11-605
M Neiva, 2009, Transcriptome analysis of the Amazonian viper Bothrops atrox venom gland using expressed sequence tags (ESTs), Toxicon, 53, 427, 10.1016/j.toxicon.2009.01.006
S Kashima, 2004, Analysis of Bothrops jararacussu venomous gland transcriptome focusing on structural and functional aspects: I–gene expression profile of highly expressed phospholipases A2, Biochimie, 86, 211
DA Cidade, 2006, Bothrops jararaca venom gland transcriptome: analysis of the gene expression pattern, Toxicon, 48, 437, 10.1016/j.toxicon.2006.07.008
J Durban, 2011, Profiling the venom gland transcriptomes of Costa Rican snakes by 454 pyrosequencing, BMC Genomics, 12, 259, 10.1186/1471-2164-12-259
SM Serrano, 2005, Snake venom serine proteinases: sequence homology vs. substrate specificity, a paradox to be solved, Toxicon, 45, 1115, 10.1016/j.toxicon.2005.02.020
JM Gutiérrez, 2013, Phospholipases A(2): Unveiling the secrets of a functionally versatile group of snake venom toxins, Toxicon, 62, 27, 10.1016/j.toxicon.2012.09.006
AM Moura-da-Silva, 2007, Importance of snake venom metalloproteinases in cell biology: Effects on platelets, inflammatory and endothelial cells, Current Pharmaceutical Design, 13, 2893, 10.2174/138161207782023711
Tu AT (1977) Venoms: Chemistry and Molecular Biology. New York, USA: John Wiley.
Tu AT (1991) Reptile Venoms and Toxins. Handbook of Natural Toxins. New York: Marcel Dekker, Inc.
RA Guercio, 2006, Ontogenetic variations in the venom proteome of the Amazonian snake Bothrops atrox, Proteome Sci, 4, 11, 10.1186/1477-5956-4-11
MM Saldarriaga, 2003, Ontogenetic variability of Bothrops atrox and Bothrops asper snake venoms from Colombia, Toxicon, 42, 405, 10.1016/S0041-0101(03)00171-5
MC Menezes, 2006, Sex-based individual variation of snake venom proteome among eighteen Bothrops jararaca siblings, Toxicon, 47, 304, 10.1016/j.toxicon.2005.11.007
HL Gibbs, 2009, Snake population venomics: proteomics-based analyses of individual variation reveals significant gene regulation effects on venom protein expression in Sistrurus rattlesnakes, J Mol Evol, 68, 113, 10.1007/s00239-008-9186-1
HL Gibbs, 2009, Functional basis of a molecular adaptation: prey-specific toxic effects of venom from Sistrurus rattlesnakes, Toxicon, 53, 672, 10.1016/j.toxicon.2009.01.034
A Barlow, 2009, Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution, Proc Biol Sci, 276, 2443, 10.1098/rspb.2009.0048
JJ Calvete, 2005, Snake venom disintegrins: evolution of structure and function, Toxicon, 45, 1063, 10.1016/j.toxicon.2005.02.024
AM Moura-da-Silva, 1996, Evolution of Disintegrin Cysteine-rich and mammalian Matrix-degrading Metalloproteinases: Gene duplication and divergence of a common ancestor rather than convergent evolution, Journal of Molecular Evolution, 43, 263, 10.1007/BF02338834
PA Carrasco, 2012, Morphology, phylogeny and taxonomy of South American bothropoid pit vipers (Serpentes, Viperidae), Zoologica Scripta, 41, 109, 10.1111/j.1463-6409.2011.00511.x
Wüster W, Salomão MG, Quijada-Mascarenhas JA, Thorpe RS (2002) Origins and evolution of the South American pitvipers fauna: evidence from mitocondrial DNA sequence analysis. In: Shuett W, Höggren M, Douglas ME, Greene HW, editors. Biology of the vipers. Eagle Mountain, UT: Eagle Mountain Publishing. pp. 111–129.
TA Castoe, 2006, Bayesian mixed models and the phylogeny of pitvipers (Viperidae: Serpentes), Mol Phylogenet Evol, 39, 91, 10.1016/j.ympev.2005.12.014
AM Fenwick, 2009, Morphological and molecular evidence for phylogeny and classification of South American pitvipers, genera <italic>Bothrops</italic>, <italic>Bothriopsis</italic>, and <italic>Bothrocophias</italic> (Serpentes: Viperidae), Zoological Journal of the Linnean Society, 156, 617, 10.1111/j.1096-3642.2008.00495.x
I Tanjoni, 2003, Snake venom metalloproteinases: structure/function relationships studies using monoclonal antibodies, Toxicon, 42, 801, 10.1016/j.toxicon.2003.10.010
I Tanjoni, 2003, Phylogenetic conservation of a snake venom metalloproteinase epitope recognized by a monoclonal antibody that neutralizes hemorrhagic activity, Toxicon, 42, 809, 10.1016/j.toxicon.2003.10.011
VL Cunha Bastos, 2007, Cytosolic glutathione peroxidase from liver of pacu (Piaractus mesopotamicus), a hypoxia-tolerant fish of the Pantanal, Biochimie, 89, 1332, 10.1016/j.biochi.2007.04.003
WH McDonald, 2004, MS1, MS2, and SQT-three unified, compact, and easily parsed file formats for the storage of shotgun proteomic spectra and identifications, Rapid Commun Mass Spectrom, 18, 2162, 10.1002/rcm.1603
T Xu, 2006, ProLuCID, a fast and sensitive tandem mass spectra-based protein identification program, Molecular and Cellular Proteomics, 5, S
A Keller, 2002, Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search, Anal Chem, 74, 5383, 10.1021/ac025747h
AI Nesvizhskii, 2003, A statistical model for identifying proteins by tandem mass spectrometry, Anal Chem, 75, 4646, 10.1021/ac0341261
KU Camey, 2002, Pharmacological characterization and neutralization of the venoms used in the production of Bothropic antivenom in Brazil, Toxicon, 40, 501, 10.1016/S0041-0101(01)00245-8
JA Gené, 1989, Comparative study on coagulant, defibrinating, fibrinolytic and fibrinogenolytic activities of Costa Rican crotaline snake venoms and their neutralization by a polyvalent antivenom, Toxicon, 27, 841, 10.1016/0041-0101(89)90096-2
AM Moura-da-Silva, 1990, Differences in distribution of myotoxic proteins in venoms from different Bothrops species, Toxicon, 28, 1293, 10.1016/0041-0101(90)90094-N
AM Moura-da-Silva, 1991, Isolation and Comparison of Myotoxins Isolated From Venoms of Different Species of <italic>Bothrops</italic> Snakes, Toxicon, 29, 713, 10.1016/0041-0101(91)90063-W
Mackessy SP (2008) Venom composition in rattlesnakes: trends and biological significance. In: Hayes WK, Beaman KR, Cardwell MD, Bush SP, editors. The Biology of Rattlesnakes. Loma Linda, CA, USA : Loma Linda University Press. pp. 495–510.
Y Angulo, 2008, Snake venomics of Central American pitvipers: clues for rationalizing the distinct envenomation profiles of Atropoides nummifer and Atropoides picadoi, J Proteome Res, 7, 708, 10.1021/pr700610z
J Fernández, 2010, Snake venomics of Bothriechis nigroviridis reveals extreme variability among palm pitviper venoms: different evolutionary solutions for the same trophic purpose, J Proteome Res, 9, 4234, 10.1021/pr100545d
HL Gibbs, 2013, Phylogeny-Based Comparative Analysis of Venom Proteome Variation in a Clade of Rattlesnakes (Sistrurus sp.), PLoS One, 8, e67220, 10.1371/journal.pone.0067220
SP Mackessy, 2010, Evolutionary trends in venom composition in the western rattlesnakes (Crotalus viridis sensu lato): toxicity vs. tenderizers, Toxicon, 55, 1463, 10.1016/j.toxicon.2010.02.028
JJ Calvete, 2010, Snake venomics of the Central American rattlesnake Crotalus simus and the South American Crotalus durissus complex points to neurotoxicity as an adaptive paedomorphic trend along Crotalus dispersal in South America, J Proteome Res, 9, 528, 10.1021/pr9008749
JW Fox, 2008, Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity, Febs Journal, 275, 3016, 10.1111/j.1742-4658.2008.06466.x
SM Serrano, 2006, The cysteine-rich domain of snake venom metalloproteinases is a ligand for von Willebrand factor A domains: role in substrate targeting, Journal of Biological Chemistry, 281, 39746, 10.1074/jbc.M604855200
C Baldo, 2010, Mechanisms of Vascular Damage by Hemorrhagic Snake Venom Metalloproteinases: Tissue Distribution and In Situ Hydrolysis, Plos Neglected Tropical Diseases, 4, e727, 10.1371/journal.pntd.0000727
JM Gutierrez, 2000, Snake venom metalloproteinases: Their role in the pathogenesis of local tissue damage, Biochimie, 82, 841, 10.1016/S0300-9084(00)01163-9
JC Modesto, 2005, Insularinase A, a prothrombin activator from Bothrops insularis venom, is a metalloprotease derived from a gene encoding protease and disintegrin domains, Biol Chem, 386, 589
JL Cardoso, 1993, Randomized comparative trial of three antivenoms in the treatment of envenoming by lance-headed vipers (Bothrops jararaca) in São Paulo, Brazil, Quarterly Journal of Medicine, 86, 315
JM Gutierrez, 1998, Neutralization of local tissue damage induced by Bothrops asper (terciopelo) snake venom, Toxicon, 36, 1529, 10.1016/S0041-0101(98)00145-7
MA McLane, 1998, Viper venom disintegrins and related molecules, Proceedings of the Society for Experimental Biology and Medicine, 219, 109, 10.3181/00379727-219-44322
MeF Furtado, 2010, Antigenic cross-reactivity and immunogenicity of Bothrops venoms from snakes of the Amazon region, Toxicon, 55, 881, 10.1016/j.toxicon.2009.12.014
GP Queiroz, 2008, Interspecific variation in venom composition and toxicity of Brazilian snakes from Bothrops genus, Toxicon, 52, 842, 10.1016/j.toxicon.2008.10.002
EG Muniz, 2000, Neutralizing potency of horse antibothropic Brazilian antivenom against Bothrops snake venoms from the Amazonian rain forest, Toxicon, 38, 1859, 10.1016/S0041-0101(00)00082-9
A Segura, 2010, Preclinical assessment of the neutralizing capacity of antivenoms produced in six Latin American countries against medically-relevant Bothrops snake venoms, Toxicon, 56, 980, 10.1016/j.toxicon.2010.07.001
P Saravia, 2001, The venom of Bothrops asper from Guatemala: toxic activities and neutralization by antivenoms, Toxicon, 39, 401, 10.1016/S0041-0101(00)00122-7
PPO Pardal, 2004, Clinical trial of two antivenoms for the treatment of Bothrops and Lachesis bites in the north eastern Amazon region of Brazil, Transactions of the Royal Society of Tropical Medicine and Hygiene, 98, 28, 10.1016/S0035-9203(03)00005-1
JJ Calvete, 2010, Antivenomics and venom phenotyping: A marriage of convenience to address the performance and range of clinical use of antivenoms, Toxicon, 56, 1284, 10.1016/j.toxicon.2009.12.015
JJ Calvete, 2011, Omic technologies to fight the neglect, J Proteomics, 74, 1483, 10.1016/j.jprot.2011.07.004
JM Gutiérrez, 2013, Assessing the preclinical efficacy of antivenoms: From the lethality neutralization assay to antivenomics, Toxicon, 69, 168, 10.1016/j.toxicon.2012.11.016
NR Casewell, 2011, Domain loss facilitates accelerated evolution and neofunctionalization of duplicate snake venom metalloproteinase toxin genes, Mol Biol Evol, 28, 2637, 10.1093/molbev/msr091