So sánh mạng Nơ-ron Dài Ngắn Trong Mô Hình Thủy văn trong Mô phỏng Chảy tràn
Tóm tắt
Mô hình hóa dòng chảy là một trong những thách thức quan trọng trong lĩnh vực thủy văn học. Có nhiều phương pháp khác nhau, từ mô hình dựa trên lý thuyết vật lý cho đến mô hình hoàn toàn dựa trên dữ liệu. Trong bài báo này, chúng tôi đề xuất một phương pháp dựa trên dữ liệu sử dụng mạng Nơ-ron Dài Ngắn (LSTM) tiên tiến nhất. Mô hình được đề xuất đã được áp dụng tại lưu vực Hồ Poyang (PYLB) và hiệu suất của nó được so sánh với Mạng Nơ-ron Nhân tạo (ANN) và Công cụ Đánh giá Nước & Đất (SWAT). Chúng tôi trước tiên kiểm tra tác động của số bước thời gian trước đó (kích thước cửa sổ) trong độ chính xác mô phỏng. Kết quả cho thấy kích thước cửa sổ không thích hợp lớn sẽ làm giảm hiệu suất mô hình một cách đáng kể. Đối với PYLB, kích thước cửa sổ 15 ngày có thể là phù hợp cho cả độ chính xác và hiệu quả tính toán. Chúng tôi sau đó đã đào tạo mô hình với 2 tập dữ liệu đầu vào khác nhau, bao gồm tập dữ liệu chỉ có lượng mưa và tập dữ liệu tất cả các biến khí tượng sẵn có. Kết quả cho thấy mặc dù LSTM với dữ liệu lượng mưa là đầu vào duy nhất có thể đạt được kết quả mong muốn (với NSE dao động từ 0.60 đến 0.92 trong giai đoạn thử nghiệm), nhưng hiệu suất có thể được cải thiện đơn giản bằng cách cung cấp cho mô hình nhiều biến khí tượng hơn (với NSE dao động từ 0.74 đến 0.94 trong giai đoạn thử nghiệm). Hơn nữa, kết quả so sánh với ANN và SWAT cho thấy ANN có thể đạt hiệu suất tương đương với SWAT trong hầu hết các trường hợp, trong khi hiệu suất của LSTM thì tốt hơn nhiều. Kết quả của nghiên cứu này nhấn mạnh tiềm năng của LSTM trong mô hình hóa dòng chảy, đặc biệt là cho các khu vực mà dữ liệu địa hình chi tiết không có sẵn.
Từ khóa
Tài liệu tham khảo
Yang, H.B., and Yang, D.W. (2011). Derivation of climate elasticity of runoff to assess the effects of climate change on annual runoff. Water Resour. Res., 47.
Donohue, 2011, Assessing the differences in sensitivities of runoff to changes in climatic conditions across a large basin, J. Hydrol., 406, 234, 10.1016/j.jhydrol.2011.07.003
Kratzert, 2018, Rainfall-Runoff modelling using Long-Short-Term-Memory (LSTM) networks, Hydrol. Earth Syst. Sci. Discuss., 2018, 1
Lee, 2005, Selection of conceptual models for regionalisation of the rainfall-runoff relationship, J. Hydrol., 312, 125, 10.1016/j.jhydrol.2005.02.016
Kan, 2017, A new hybrid data-driven model for event-based rainfall–runoff simulation, Neural Comput. Appl., 28, 2519, 10.1007/s00521-016-2200-4
Nash, 1991, Sensitivity of streamflow in the Colorado basin to climatic changes, J. Hydrol., 125, 221, 10.1016/0022-1694(91)90030-L
Revelle, 1983, Effects of a Carbon Dioxide-Induced Climatic Change on Water Supplies in 7 the Western United States, Month, 419, 432
Schaake, J.C., and Waggoner, P. (1990). From climate to flow, Climate Change and US Water Resources.
Vogel, 1999, Regional regression models of annual streamflow for the United States, J. Irrig. Drain. Eng., 125, 148, 10.1061/(ASCE)0733-9437(1999)125:3(148)
Li, 2015, Investigating a complex lake-catchment-river system using artificial neural networks: Poyang Lake (China), Hydrol. Res., 46, 912, 10.2166/nh.2015.150
Maniquiz, 2010, Multiple linear regression models of urban runoff pollutant load and event mean concentration considering rainfall variables, J. Environ. Sci., 22, 946, 10.1016/S1001-0742(09)60203-5
Behzad, 2009, Generalization performance of support vector machines and neural networks in runoff modeling, Expert Syst. Appl., 36, 7624, 10.1016/j.eswa.2008.09.053
Parkin, 2007, A numerical modelling and neural network approach to estimate the impact of groundwater abstractions on river flows, J. Hydrol., 339, 15, 10.1016/j.jhydrol.2007.01.041
Ferrazzoli, 2003, Retrieving soil moisture and agricultural variables by microwave radiometry using neural networks, Remote Sens. Environ., 84, 174, 10.1016/S0034-4257(02)00105-0
Shoaib, 2018, A comparative study of various hybrid wavelet feedforward neural network models for runoff forecasting, Water Resour. Manag., 32, 83, 10.1007/s11269-017-1796-1
Fang, 2017, Prolongation of SMAP to spatiotemporally seamless coverage of continental US using a deep learning neural network, Geophys. Res. Lett., 44, 11, 10.1002/2017GL075619
Shen, 2018, A trans-disciplinary review of deep learning research and its relevance for water resources scientists, Water Resour. Res., 54, 8558, 10.1029/2018WR022643
Chollet, F., and Allaire, J.J. (2018). Deep Learning with R, Manning Publications Company.
Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. (2016). Deep Learning, MIT Press.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (July, January 26). Rethinking the inception architecture for computer vision. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA.
Hinton, 2012, Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups, IEEE Signal Process. Mag., 29, 82, 10.1109/MSP.2012.2205597
Sutskever, I., Vinyals, O., and Le, Q.V. (2014). Sequence to sequence learning with neural networks. Advances in Neural Information Processing Systems, Curran Associates, Inc.
Hu, C., Wu, Q., Li, H., Jian, S., Li, N., and Lou, Z. (2018). Deep Learning with a Long Short-Term Memory Networks Approach for Rainfall-Runoff Simulation. Water, 10.
Zhang, 2018, Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas, J. Hydrol., 561, 918, 10.1016/j.jhydrol.2018.04.065
Zhu, H., and Zhang, B. (1997). Poyang Lake-Hydrology Biology Deposit Wetland Development and Rehabilitation, China Science and Technology University Press.
Shankman, 2003, Landscape Changes and Increasing Flood Frequency in China’s Poyang Lake Region, Prof. Geogr., 55, 434, 10.1111/0033-0124.5504003
Tan, 2015, Influences of Climate Extremes on NDVI (Normalized Difference Vegetation Index) in the Poyang Lake Basin, China, Wetlands, 35, 1033, 10.1007/s13157-015-0692-9
Fan, H., Xu, L., Tao, H., Feng, W., Cheng, J., and You, H. (2017). Accessing the Difference in the Climate Elasticity of Runoff across the Poyang Lake Basin, China. Water, 9.
Ye, 2013, Distinguishing the relative impacts of climate change and human activities on variation of streamflow in the Poyang Lake catchment, China, J. Hydrol., 494, 83, 10.1016/j.jhydrol.2013.04.036
LeCun, Y.A., Bottou, L., Orr, G.B., and Müller, K.R. (2012). Efficient backprop. Neural Networks: Tricks of the Trade, Springer.
Kawakami, K. (2008). Supervised Sequence Labelling with Recurrent Neural Networks. [Ph.D. Thesis, Technical University of Munich].
Zeiler, M.D. (2012). ADADELTA: An Adaptive Learning Rate Method. arXiv.
Jacobs, 1988, Increased rates of convergence through learning rate adaptation, Neural Netw., 1, 295, 10.1016/0893-6080(88)90003-2
Kingma, D.P., and Ba, J. (2014). Adam: A Method for Stochastic Optimization. arXiv.
Arnold, 1998, Large area hydrologic modeling and assessment part I: Model development 1, JAWRA J. Am. Water Resour. Assoc., 34, 73, 10.1111/j.1752-1688.1998.tb05961.x
Abbaspour, 2015, A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model, J. Hydrol., 524, 733, 10.1016/j.jhydrol.2015.03.027
Zhang, 2004, A distributed non-point source pollution model: Calibration and validation in the Yellow River Basin, J. Environ. Sci., 16, 646
Gassman, 2014, Applications of the SWAT model special section: Overview and insights, J. Environ. Qual., 43, 1, 10.2134/jeq2013.11.0466
Schuol, 2006, Calibration and uncertainty issues of a hydrological model (SWAT) applied to West Africa, Adv. Geosci., 9, 137, 10.5194/adgeo-9-137-2006
Neitsch, S.L., Arnold, J.G., Kiniry, J.R., and Williams, J.R. (2011). Soil and Water Assessment Tool Theoretical Documentation Version 2009, Texas Water Resources Institute. Technical Report.
Guo, 2008, Annual and seasonal streamflow responses to climate and land-cover changes in the Poyang Lake basin, China, J. Hydrol., 355, 106, 10.1016/j.jhydrol.2008.03.020
Chen, 2006, Regional climate change and its effects on river runoff in the Tarim Basin, China, Hydrol. Process., 20, 2207, 10.1002/hyp.6200
Lu, 2013, Study on the optimal hydropower generation of Zhelin reservoir, J. Hydro-Environ. Res., 7, 270, 10.1016/j.jher.2013.01.002
Allaire, J., and Tang, Y. (2018). Tensorflow: R Interface to ‘TensorFlow’, The Comprehensive R Archive Network. R Package Version 1.10.