So sánh Cộng đồng Vi khuẩn và Nấm Giữa Rừng Thông Tự Nhiên và Rừng Thông Trồng Ở Trung Quốc Nhiệt Đới

Ming Nie1,2, Han Meng3, Ke Li3, Jia-Rong Wan2, Zhe-Xue Quan3, Chang-Ming Fang1, Jia-Kuan Chen1,2, Bo Li1,2
1Institute of Biodiversity Science and Research Institute for the Changing Global Environment, Fudan University, Shanghai, People’s Republic of China
2Centre for Watershed Ecology, Institute of Life Science and Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, People’s Republic of China
3Department of Microbiology and Microbial Engineering, Fudan University, Shanghai, People’s Republic of China

Tóm tắt

Để nâng cao nhận thức của chúng tôi về những thay đổi trong sự đa dạng của vi khuẩn và nấm ở rừng thông tự nhiên và rừng thông trồng trong khu vực cận nhiệt đới của Trung Quốc, chúng tôi đã khảo sát cộng đồng vi khuẩn và nấm từ một rừng thông bản địa và một rừng thông trồng gần đó ở núi Lushan bằng cách tạo ra các thư viện sao chép của gen 16S và 18S rRNA. Đối với các cộng đồng vi khuẩn, Proteobacteria và Acidobacteria là các thuế vi khuẩn chiếm ưu thế trong cả hai loại đất rừng. Chỉ số đa dạng Shannon-Wiener, phân tích đường cong hiếm và phân tích LibShuff cho thấy hai khu rừng này có độ đa dạng cộng đồng vi khuẩn tương tự nhau. Độ axit đất thấp (pH ≈ 4) của các khu rừng mà chúng tôi nghiên cứu có thể là một trong những yếu tố lựa chọn quan trọng nhất quyết định sự phát triển của Acidobacteria và Proteobacteria ưa acid. Tuy nhiên, rừng tự nhiên có mức độ đa dạng nấm lớn hơn rừng trồng theo chỉ số đa dạng Shannon-Wiener và phân tích đường cong hiếm. Basidiomycota và Ascomycota là các thuế nấm chiếm ưu thế trong đất của rừng tự nhiên và rừng trồng tương ứng. Kết quả của chúng tôi chỉ ra rằng cộng đồng nấm nhạy cảm hơn so với cộng đồng vi khuẩn trong việc xác định sự khác biệt về tác động của thảm thực vật lên hệ thực vật vi sinh vật ở rừng tự nhiên và rừng trồng. Rừng tự nhiên và rừng trồng có thể hoạt động khác nhau do sự khác biệt trong đa dạng nấm đất và độ phong phú tương đối.

Từ khóa

#vi khuẩn #nấm #cộng đồng vi sinh vật #rừng thông tự nhiên #rừng thông trồng #Trung Quốc cận nhiệt đới

Tài liệu tham khảo

Asano Y, Compton JE, Church MR (2006) Hydrologic flowpaths influence inorganic and organic nutrient leaching in a forest soil. Biogeochemistry 81:191–204

Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Jones AJ, Weightman AJ (2006) New Screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Environ Microb 72:5733–5741

Barns SM, Takala SL, Kuske CR (1999) Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl Environ Microbiol 65:1731–1737

Bastias BA, Anderson IC, Xu Z, Cairney JWG (2007) RNA- and DNA-based profiling of soil fungal communities in a native Australian eucalypt forest and adjacent Pinus elliotti plantation. Soil Biol Biochem 39:3108–3114

Brockerhoff EG, Jactel H, Parrotta JA, Quine CP, Sayer J (2008) Plantation forests and biodiversity: oxymoron or opportunity? Biodivers Conserv 17:925–951

Byrd KB, Parker VT, Vogler DR, Cullings KW (2000) The influence of clear-cutting on ectomycorrhizal fungus diversity in a lodgepole pine (Pinus contorta) stand, Yellowstone National Park, Wyoming, and Gallatin National Forest, Montana. Can J Bot-Rev Can Bot 78:149–156

Chan OC, Yang XD, Fu Y, Feng ZL, Sha LQ, Casper P, Zou XM (2006) 16S rRNA gene analyses of bacterial community structures in the soils of evergreen broad-leaved forests in south-west China. FEMS Microb Ecol 58:247–259

Chao A, Ma MC, Yang MCK (1993) Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika 80:193–201

Chaverri P, Vilchez B (2006) Hypocrealean (Hypocreales, Ascomycota) fungal diversity in different stages of tropical forest succession in Costa Rica. Biotropica 38:531–543

Courty PE, Buee M, Diedhiou AG, Frey-Klett P, Le Tacon F, Rineau F, Turpault MP, Uroz S, Garbaye J (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem 42:679–698

Curlevski NJA, Xu ZH, Anderson IC, Cairney JWG (2010) Converting Australian tropical rainforest to native Araucariaceae plantations alters soil fungal communities. Soil Biol Biochem 42:14–20

DeFries RS, Rudel T, Uriarte M, Hansen M (2010) Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat Geosci 3:178–181

Guerra CA, Snow RW, Hay SI (2006) A global assessment of closed forests, deforestation and malaria risk. Ann Trop Med Parasitol 100:189–204

Hagerman SM, Jones MD, Bradfield GE, Gillespie M, Durall DM (1999) Effects of clear-cut logging on the diversity and persistence of ectomycorrhizae at a subalpine forest. Can J For Res 29:124–134

Heck KL, Vanbelle G, Simberloff D (1975) Explicit calculation of rarefaction diversity measurement and determination of sufficient sample size. Ecology 56:1459–1461

Hiraishi A, Kishimoto N, Kosako Y, Wakao N, Tano T (1995) Phylogenetic position of the menaquinone-containing acidophilic chemo-organotroph Acidobacterium-Capsulatum. FEMS Microb Ecol 132:91–94

Jackson CR, Liew KC, Yule CM (2009) Structural and functional changes with depth in microbial communities in a Tropical Malaysian Peat Swamp Forest. Microb Ecol 57:402–412

Krivtsov V, Bezginova T, Salmond R, Liddell K, Garside A, Thompson J, Palfreyman JW, Staines HJ, Brendler A, Griffiths B, Watling R (2006) Ecological interactions between fungi, other biota and forest litter composition in a unique Scottish woodland. Forestry 79:201–216

Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

Lane DJ (1991) 16S/23 SrRNA sequencing. Wiley, New York

Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415

Lee SM, Chao A (1994) Estimating population-size via sample coverage for closed capture-recapture models. Biometrics 50:88–97

Lei GC, Hanski I (1998) Spatial dynamics of two competing specialist parasitoids in a host metapopulation. J Anim Ecol 67:422–433

Liao CZ, Luo YQ, Fang CM, Li B (2010) Ecosystem carbon stock influenced by plantation practice: implications for planting forests as a measure of climate change mitigation. Plos One 5:e10867

Liao C, Luo Y, Fang C, Chen J, Li B (2011) The effects of plantation practice on soil properties based on the comparison between natural and planted forests: a meta-analysis. Glob Ecol Biogeogr. doi:10.1111/j.1466-8238.2011.00690.x

Lin YT, Huang YJ, Tang SL, Whitman WB, Coleman DC, Chiu CY (2010) Bacterial community diversity in undisturbed perhumid montane forest soils in Taiwan. Microb Ecol 59:369–378

Liu XZ, Wang L (2010) Scientific survey and study of biodiversity on the Lushan Nature Reserve in Jiangxi Province. Science Press, Beijing

Lonsdale D, Pautasso M, Holdenrieder O (2008) Wood-decaying fungi in the forest: conservation needs and management options. Eur J For Res 127:1–22

Lopez-Garcia P, Duperron S, Philippot P, Foriel J, Susini J, Moreira D (2003) Bacterial diversity in hydrothermal sediment and epsilon proteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ Microbiol 5:961–976

Moscatelli MC, Lagomarsino A, Marinari S, De Angelis P, Grego S (2005) Soil microbial indices as bioindicators of environmental changes in a poplar plantation. Ecol Indic 5:171–179

Norden B, Paltto H (2001) Wood-decay fungi in hazel wood: species richness correlated to stand age and dead wood features. Biol Conserv 101:1–8

Palmer MW (1994) Variation in species richness: towards a unification of hypotheses. Folia Geobot Phytotax 29:511–530

Pan KW, Xu ZH, Blumfield T, Totua S, Lu MX (2008) In situ mineral N-15 dynamics and fate of added (NH4 +)-N15 in hoop pine plantation and adjacent native forest in subtropical Australia. J Soils Sediments 8:398–405

Pawson SM, Brockerhoff EG, Meenken ED, Didham RK (2008) Non-native plantation forests as alternative habitat for native forest beetles in a heavily modified landscape. Biodivers Conserv 17:1127–1148

Pietikainen J, Fritze H (1995) Clear-cutting and prescribed burning in coniferous forest—comparison of effects on soil fungal and total microbial biomass, respiration activity and nitrification. Soil Biol Biochem 27:101–109

Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig WG, Peplies J, Glockner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucl Acids Res 35:7188–7196

Qualls RG, Haines BL (1991) Geochemistry of dissolved organic nutrients in water percolating through a forest ecosystem. Soil Sci Soc Am J 55:1112–1123

Saitou N, Nei M (1987) The neighbor-joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

Shannon CE, Weaver W (1963) The mathematical theory of communication. University of Illinois Press, Urbana, IL

Silveira MLA (2005) Dissolved organic carbon and bioavailability of N and P as indicators of soil quality. Sci Agric 62:502–508

Singh BK, Munro S, Potts JM, Millard P (2007) Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils. Appl Soil Ecol 36:147–155

Singleton DR, Furlong MA, Rathbun SL, Whitman WB (2001) Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 67:4374–4376

Smit E, Leeflang P, Glandorf B, van Elsas JD, Wernars K (1999) Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol 65:2614–2621

Trappe JM, Castellano MA (2000) New sequestrate Ascomycota and Basidiomycota covered by the Northwest Forest Plan. Mycotaxon 75:153–179

Tsukamoto J, Sabang J (2005) Soil macro-fauna in an Acacia mangium plantation in comparison to that in a primary mixed dipterocarp forest in the lowlands of Sarawak, Malaysia. Pedobiologia 49:69–80

Usuga JCL, Toro JAR, Alzate MVR, Tapias ADL (2010) Estimation of biomass and carbon stocks in plants, soil and forest floor in different tropical forests. For Ecol Manage 260:1906–1913

van Dijk A, Keenan RJ (2007) Planted forests and water in perspective. For Ecol Manage 251:1–9

Wardle DA, Yeates GW, Barker GM, Bonner KI (2006) The influence of plant litter diversity on decomposer abundance and diversity. Soil Biol Biochem 38:1052–1062

Xu ZH, Ward S, Chen CR, Blumfield T, Prasolova N, Liu JX (2008) Soil carbon and nutrient pools, microbial properties and gross nitrogen transformations in adjacent natural forest and hoop pine plantations of subtropical Australia. J Soils Sediments 8:99–105