Comparison Between Three Tuning Methods of PID Control for High Precision Positioning Stage

MAPAN - 2015
Rajat Sen1, Chinmoy Pati2, Samik Dutta2, Ranjan Sen2
1Electrical and Computer Engineering Department, University of Texas, Austin, USA
2Precision Engineering and Metrology Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

K. Takamasu, Present problems in coordinate metrology for nano and micro scale measurements, MAPAN-J. Metrol. Soc. India, 26 (2011) 3–14.

K. Iimura, E. Kataoka, M. Ozaki and R. Furutani, The uncertainty of parallel model coordinate measuring machine, MAPAN-J. Metrol. Soc. India, 26 (2011) 47–53.

G. Raina, Atomic force microscopy as a nanometrology tool: some issues and future targets, MAPAN-J. Metrol. Soc. India, 28 (2013) 311–319.

M. Bahrawi and N. Farid, Application of a commercially available displacement measuring interferometer to line scale measurement and uncertainty of measurement, MAPAN-J. Metrol. Soc. India, 25 (2010) 259–264.

S. Barman and R. Sen, Enhancement of accuracy of multi-axis machine tools through error measurement and compensation of errors using laser interferometry technique, MAPAN-J. Metrol. Soc. India, 25 (2010) 79–87.

K. K. Tan, S. N. Huang and H. L. Seet, Geometrical error compensation of precision motion systems using radial basis function, IEEE Trans. Instrument. Meas., 49 (2000) 984–991.

K. K. Tan, S. N. Huang and T. H. Lee, Geometrical error compensation and control of an XY table using neural networks, Control Eng. Pract., 14 (2006) 59–69.

D. Li, M. Li, F. Xu, M. Zhang, W. Wang and J. Wang, Performance robustness criterion of PID controllers, In: M. Vagia (Ed.), PID controller design approaches—theory, tuning and application to frontier areas, InTech, Chengdu (2012) pp. 187–210.

K. J. Åström, T. Hügglund, C. C. Hang and W. K. Ho, Automatic tuning and adaptation for PID controllers—a survey, Control Eng. Pract., 1(1993) 699–714.

P. Cominos and N. Munro, PID controllers: recent tuning methods and design to specification, IEEE Proc. Control Theory Appl., 149 (2002) 46–53.

A. Karimi, D. Garcia and R. Longchamp, PID controller tuning using Bode’s integrals, IEEE Trans. Control Syst. Technol., 11 (2003) 812–821.

H. O. Bansal, R. Sharma and P. R. Shreeraman, PID controller tuning techniques: a review, J. Control Eng. Technol., 2 (2012) 168–176.

J. G. Ziegler and N. B. Nichols, Optimum settings for automatic controllers, Trans. ASME, 64 (1942) 759–768.

K. L. Chien, J. A. Hrones, and J. B. Reswick, On the automatic control of generalized passive systems, Trans. ASME, 74 (1952) 175–185.

G. H. Cohen and G. A. Coon, Theoretical consideration of retarded control, Trans. ASME, 75 (1953) 827–834.

J. Paulusova and M. Dubravska, Application of design of PID controller for continuous systems. Available In: www2.humusoft.cz/www/papers/matlab12/060_paulusova.pdf , Accessed on 20th July, 2013.

S. R. Vaishnav and Z. J. Khan, Performance of tuned PID controller and a new hybrid fuzzy PD + I controller, World J. Model. Simul., 6 (2010) 141–149.

M. Shahrokhi and A. Zomorrodi, Comparison of PID controller tuning methods, Available In: http://www.ie.itcr.ac.cr/einteriano/control/clase/Zomorrodi_Shahrokhi_PID_Tunning_Comparison.pdf , Accessed on 4th August, 2013.

Y. Nishikawa, N. Sannomiya, T. Ohta and H. Tanaka, A method for auto-tuning of PID control parameters, Automatica, 20 (1984) 321–332.

D. Xue, Y. Q. Chen and D. P. Atherton, Linear feedback control: analysis and design with MATLAB, Society for Industrial and Applied Mathematics, Philadelphia, 2007.

S. Dutta, C. Pati and R. Sen, Simultaneous position and angular error measurement of precision positioning stages using miniature interferometer with step-size variation, Int. J. Precis. Technol., 4 (2014) 29–45.