Comparingparameter choice methods for regularization of ill-posed problems

Mathematics and Computers in Simulation - Tập 81 Số 9 - Trang 1795-1841 - 2011
Frank Bauer1, Mark A. Lukas2
1Fuzzy Logic Laboratorium Linz-Hagenberg, University of Linz, Softwarepark 21, 4232 Hagenberg, Austria#TAB#
2Mathematics and Statistics, Murdoch University, South Street, Murdoch, WA 6150, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abascal, 2008, Comparison of methods for optimal choice of the regularization parameter for linear electrical impedance tomography of brain function, Physiol. Meas., 29, 1319, 10.1088/0967-3334/29/11/007

Akaike, 1973, Information theory and an extension of the maximum likelihood principle, 267

Åkesson, 2008, Parameter selection methods for axisymmetric flame tomography through Tikhonov regularization, Appl. Opt., 47, 407, 10.1364/AO.47.000407

Alifanov, 1979, On the stability of iterative methods for the solution of linear ill-posed problems, Sov. Math., Dokl., 20, 1133

Anderssen, 1974, Numerical differentiation procedures for non-exact data, Numer. Math., 22, 157, 10.1007/BF01436965

Arcangeli, 1966, Pseudo-solution de l’équation Ax=y, C.R. Acad. Sci. Paris, Ser. A, 263, 282

Bakushinskii, 1984, Remarks on choosing a regularization parameter using the quasi-optimality and ratio criterion, U.S.S.R. Comp. Math. Math. Phys., 24, 181, 10.1016/0041-5553(84)90253-2

Bakushinsky, 2005, On application of generalized discrepancy principle to iterative methods for nonlinear ill-posed problems, Numer. Funct. Anal. Optim., 26, 35, 10.1081/NFA-200051631

Bauer, 2007, Some considerations concerning regularization and parameter choice algorithms, Inverse Probl., 23, 837, 10.1088/0266-5611/23/2/021

F. Bauer, Applying Lepskij-balancing in practice, http://arxiv.org/abs/1008.0657 (2010).

F. Bauer, Parameter choice by fast balancing, http://arxiv.org/abs/1008.0620 (2010).

Bauer, 2005, A Lepskij-type stopping rule for regularized Newton methods, Inverse Probl., 21, 1975, 10.1088/0266-5611/21/6/011

Bauer, 2009, Iteratively regularized Gauss–Newton method for nonlinear inverse problems with random noise, SIAM J. Numer. Anal., 47, 1827, 10.1137/080721789

Bauer, 2008, The quasi-optimality criterion for classical inverse problems, Inverse Probl., 24, 035002, 10.1088/0266-5611/24/3/035002

Bauer, 2009, Recent results on the quasi-optimality principle, J. Inverse Ill-Posed Probl., 17, 5, 10.1515/JIIP.2009.002

Bauer, 2010, Parameter choice methods using minimization schemes, J. Complexity

Bauer, 2007, Optimal regularization for ill-posed problems in metric spaces, J. Inverse Ill-Posed Probl., 15, 137, 10.1515/JIIP.2007.007

Bauer, 2005, Regularization without preliminary knowledge of smoothness and error behavior, Eur. J. Appl. Math., 16, 303, 10.1017/S0956792505006236

Bauer, 2008, Regularization independent of the noise level: an analysis of quasi-optimality, Inverse Probl., 24, 055009, 10.1088/0266-5611/24/5/055009

Brezinski, 2008, Error estimates for linear systems with applications to regularization, Numer. Algorithms, 49, 85, 10.1007/s11075-008-9163-1

Brezinski, 2009, Error estimates for the regularization of least squares problems, Numer. Algorithms, 51, 61, 10.1007/s11075-008-9243-2

Brown, 1996, Asymptotic equivalence of nonparametric regression and white noise, Ann. Stat., 24, 2384, 10.1214/aos/1032181159

Calvetti, 2002, L-curve curvature bounds via Lanczos bidiagonalization, Elect. Trans. Numer. Anal., 14, 20

Candès, 2006, Modern statistical estimation via oracle inequalities, Acta Numer., 15, 257, 10.1017/S0962492906230010

Cavalier, 2008, Nonparametric statistical inverse problems, Inverse Probl., 24, 034004, 10.1088/0266-5611/24/3/034004

Cavalier, 2002, Oracle inequalities for inverse problems, Ann. Stat., 30, 843, 10.1214/aos/1028674843

Cavalier, 2006, Risk hull method and regularization by projections of ill-posed inverse problems, Ann. Stat., 34, 1653, 10.1214/009053606000000542

Colton, 1998

Correia, 2009, Selection of regularization parameter for optical topography, J. Biomed. Opt., 14, 034044, 10.1117/1.3156839

Cox, 1988, Approximation of method of regularization estimators, Ann. Stat., 16, 694, 10.1214/aos/1176350829

Craven, 1979, Smoothing noisy data with spline functions, Numer. Math., 31, 377, 10.1007/BF01404567

Cummins, 2001, Confidence intervals for nonparametric curve estimates: toward more uniform pointwise coverage, J. Am. Stat. Assoc., 96, 233, 10.1198/016214501750332811

Davies, 1982, On the maximum likelihood regularization of Fredholm convolution equations of the first kind, 95

Davies, 1986, Improved estimates of statistical regularization parameters in Fourier differentiation and smoothing, Numer. Math., 48, 671, 10.1007/BF01399688

Ditmar, 2007, Frequency-dependent data weighting in global gravity field modeling from satellite data contaminated by non-stationary noise, J. Geod., 81, 81, 10.1007/s00190-006-0074-4

Ditmar, 2003, Computation of spherical harmonic coefficients from gravity gradiometry data to be acquired by the GOCE satellite: regularization issues, J. Geod., 77, 465, 10.1007/s00190-003-0349-y

Efron, 2001, Selection criteria for scatterplot smoothers, Ann. Stat., 29, 470, 10.1214/aos/1009210549

Eldén, 1984, A note on the computation of the generalized cross-validation function for ill-conditioned least squares problems, BIT, 24, 467, 10.1007/BF01934905

Engl, 1993, Regularization methods for the stable solution of inverse problems, Surv. Math. Ind., 3, 71

Engl, 1988, A posteriori parameter choice for general regularization methods for solving linear ill-posed problems, Appl. Numer. Math., 4, 395, 10.1016/0168-9274(88)90017-7

Engl, 1996

Engl, 2000, Convergence rate results for iterative methods for solving nonlinear ill-posed problems, 7

Eubank, 1988

Evans, 2002, Inverse problems as statistics, Inverse Probl., 18, 55, 10.1088/0266-5611/18/4/201

Farquharson, 2004, A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems, Geophys. J. Int., 156, 411, 10.1111/j.1365-246X.2004.02190.x

Fitzpatrick, 1991, Bayesian analysis in inverse problems, Inverse Probl., 7, 675, 10.1088/0266-5611/7/5/003

Gfrerer, 1987, An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates, Math. Comput., 49, 507, 10.1090/S0025-5718-1987-0906185-4

Girard, 1989, A fast “Monte-Carlo cross-validation” procedure for large least squares problems with noisy data, Numer. Math., 56, 1, 10.1007/BF01395775

Glasko, 1984, On the quasioptimality principle for linear ill-posed problems in Hilbert space, Vychisl. Mat. Mat. Fiz., 24, 1603

Goldenshluger, 2000, Adaptive estimation of linear functionals in Hilbert scales from indirect white noise observations, Probl. Th. Rel. Fields, 118, 169, 10.1007/s440-000-8013-3

G.H. Golub, M. Heath, G. Wahba, Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics 21 (1979) 215–223.

Golub, 1997, Generalized cross-validation for large scale problems, J. Comput. Graph. Stat., 6, 1

Grad, 1972, LR algorithm with Laguerre shift for symmetric tridiagonal matrices, Comput. J., 15, 268, 10.1093/comjnl/15.3.268

Groetsch, 1984

Groetsch, 1989, Regularization of ill-posed problems: optimal parameter choice in finite dimensions, J. Approx. Th., 58, 184, 10.1016/0021-9045(89)90019-1

Groetsch, 1984, Asymptotic convergence rate of Arcangeli’s method for ill-posed problems, Appl. Anal., 18, 175, 10.1080/00036818408839519

Gu, 2002

Gu, 1989, The computation of generalized cross-validation functions through Householder tridiagonalization with applications to the fitting of interaction spline models, SIAM J. Matrix Anal. Appl., 10, 457, 10.1137/0610033

Haber, 2000, A GCV based method for nonlinear ill-posed problems, Comput. Geosci., 4, 41, 10.1023/A:1011599530422

Hämarik, 2009, On minimization strategies for choice of the regularization parameter in ill-posed problems, Numer. Funct. Anal. Optim., 30, 924, 10.1080/01630560903392941

Hämarik, 1999, On the a posteriori parameter choice in regularization methods, Proc. Estonian Acad. Sci. Phys. Math., 48, 133, 10.3176/phys.math.1999.2.07

Hämarik, 2006, On the choice of the regularization parameter in ill-posed problems with approximately given noise level of data, J. Inverse Ill-Posed Probl., 14, 251, 10.1515/156939406777340928

Hämarik, 2009, About the balancing principle for choice of the regularization parameter, Numer. Funct. Anal. Optim., 30, 951, 10.1080/01630560903393139

Hämarik, 2001, On the monotone error rule for parameter choice in iterative and continuous regularization methods, BIT, 41, 1029, 10.1023/A:1021945429767

Hämarik, 2003, On the monotone error rule for choosing the regularization parameter in ill-posed problems, 27

Hanke, 1996, Limitations of the L-curve method in ill-posed problems, BIT, 36, 287, 10.1007/BF01731984

Hanke, 1993, Regularization methods for large-scale problems, Surv. Math. Ind., 3, 253

Hanke, 1996, A general heuristic for choosing the regularization parameter in ill-posed problems, SIAM J. Sci. Comput., 17, 956, 10.1137/0917062

Hansen, 1992, Analysis of discrete ill-posed problems by means of the L-curve, SIAM Rev., 34, 561, 10.1137/1034115

Hansen, 1994, Regularization tools: A Matlab package for analysis and solution of discrete ill-posed problems, Numer. Algorithms, 6, 1, 10.1007/BF02149761

Hansen, 1998

Hansen, 2001, The L-curve and its use in the numerical treatment of inverse problems, 119

Hansen, 2007, An adaptive pruning algorithm for the discrete L-curve criterion, J. Comput. Appl. Math., 198, 483, 10.1016/j.cam.2005.09.026

Hansen, 2006, Exploiting residual information in the parameter choice for discrete ill-posed problems, BIT, 46, 41, 10.1007/s10543-006-0042-7

Hansen, 1993, The use of the L-curve in the regularization of discrete ill-posed problems, SIAM J. Sci. Comput., 14, 1487, 10.1137/0914086

Hofinger, 2007, Convergence rate for the Bayesian approach to linear inverse problems, Inverse Probl., 23, 2469, 10.1088/0266-5611/23/6/012

Hofmann, 1986

Hutchinson, 1989, A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines, Commun. Stat. Simul. Comput., 18, 1059, 10.1080/03610918908812806

Hutchinson, 1985, Smoothing noisy data with spline functions, Numer. Math., 47, 99, 10.1007/BF01389878

Jansen, 1997, Generalized cross validation for wavelet thresholding, Signal Process., 56, 33, 10.1016/S0165-1684(97)83621-3

Jin, 2009, On the discrepancy principle for some Newton type methods for solving nonlinear inverse problems, Numer. Math., 111, 509, 10.1007/s00211-008-0198-y

Jin, 2000, On the iteratively regularized Gauss–Newton method for solving nonlinear ill-posed problems, Math. Comput., 69, 1603, 10.1090/S0025-5718-00-01199-6

Jin, 1999, On an a posteriori parameter choice strategy for Tikhonov regularization of nonlinear ill-posed problems, Numer. Math., 83, 139, 10.1007/s002110050442

Johnstone, 2000, Selecting the corner in the L-curve approach to Tikhonov regularization, IEEE Trans. Biomed. Eng., 47, 1293, 10.1109/10.867966

Kaipio, 2005

Kaltenbacher, 2008

Kilmer, 2001, Choosing regularization parameters in iterative methods for ill-posed problems, SIAM J. Matrix Anal. Appl., 22, 1204, 10.1137/S0895479899345960

Kindermann, 2008, On the convergence of the quasioptimality criterion for (iterated) Tikhonov regularization, Inverse Probl. Imaging, 2, 291, 10.3934/ipi.2008.2.291

Kohn, 1991, The performance of cross-validation and maximum likelihood estimators of spline smoothing parameters, J. Am. Stat. Assoc., 86, 1042, 10.1080/01621459.1991.10475150

Kou, 2002, Smoothers and the Cp, generalized maximum likelihood, and extended exponential criteria: a geometric approach, J. Am. Stat. Assoc., 97, 766, 10.1198/016214502388618582

Larkin, 1972, Gaussian measure in Hilbert space and applications in numerical analysis, Rocky Mt. J. Math., 2, 379, 10.1216/RMJ-1972-2-3-379

Lawson, 1974

Leonov, 1979, Justification of the choice of regularization parameter according to quasi-optimality and quotient criteria, U.S.S.R. Comput. Math. Math. Phys., 18, 1, 10.1016/0041-5553(78)90131-3

Lepskij, 1990, On a problem of adaptive estimation in Gaussian white noise, Theor. Probab. Appl., 35, 454, 10.1137/1135065

Li, 1986, Asymptotic optimality of CL and generalized cross-validation in ridge regression with application to spline smoothing, Ann. Stat., 14, 1101, 10.1214/aos/1176350052

Li, 1987, Asymptotic optimality for Cp, CL, cross-validation and generalized cross-validation: Discrete index set, Ann. Stat., 15, 958, 10.1214/aos/1176350486

Lukas, 1988, Convergence rates for regularized solutions, Math. Comput., 51, 107, 10.1090/S0025-5718-1988-0942146-8

Lukas, 1993, Asymptotic optimality of generalized cross-validation for choosing the regularization parameter, Numer. Math., 66, 41, 10.1007/BF01385687

Lukas, 1995, On the discrepancy principle and generalised maximum likelihood for regularisation, Bull. Aust. Math. Soc., 52, 399, 10.1017/S0004972700014891

Lukas, 1998, Asymptotic behaviour of the minimum bound method for choosing the regularization parameter, Inverse Probl., 14, 149, 10.1088/0266-5611/14/1/013

Lukas, 1998, Comparisons of parameter choice methods for regularization with discrete noisy data, Inverse Probl., 14, 161, 10.1088/0266-5611/14/1/014

Lukas, 2006, Robust generalized cross-validation for choosing the regularization parameter, Inverse Probl., 22, 1883, 10.1088/0266-5611/22/5/021

Lukas, 2008, Strong robust generalized cross-validation for choosing the regularization parameter, Inverse Probl., 24, 034006, 10.1088/0266-5611/24/3/034006

Lukas, 2010, Robust GCV choice of the regularization parameter for correlated data, J. Integral Equations Appl., 22, 519, 10.1216/JIE-2010-22-3-519

Mathé, 2003, Geometry of linear ill-posed problems in variable Hilbert spaces, Inverse Probl., 19, 789, 10.1088/0266-5611/19/3/319

Mathé, 2006, Regularization of some linear ill-posed problems with discretized random noisy data, Math. Comput., 75, 1913, 10.1090/S0025-5718-06-01873-4

Morozov, 1966, On the solution of functional equations by the method of regularization, Soviet Math. Dokl., 7, 414

Morozov, 1984

Nair, 2002, Generalized Arcangeli’s discrepancy principles for a class of regularization methods for solving ill-posed problems, J. Inverse Ill-posed Probl., 10, 281, 10.1515/jiip.2002.10.3.281

Neubauer, 1988, An a posteriori parameter choice for Tikhonov regularization in the presence of modeling error, Appl. Numer. Math., 4, 507, 10.1016/0168-9274(88)90013-X

Neubauer, 2008, The convergence of a new heuristic parameter selection criterion for general regularization methods, Inverse Probl., 24, 055005, 10.1088/0266-5611/24/5/055005

Opsomer, 2001, Nonparametric regression with correlated errors, Stat. Sci., 16, 134, 10.1214/ss/1009213287

R. Palm, Numerical comparison of regularization algorithms for solving ill-posed problems, PhD Thesis, University of Tartu, Estonia, 2010.

Phillips, 1962, A technique for the numerical solution of certain integral equations of the first kind, J. Assoc. Comput. Mach., 9, 84, 10.1145/321105.321114

Pohl, 2001, A regularization approach for the determination of remission curves, Inverse Probl. Eng., 9, 157, 10.1080/174159701088027759

Raus, 1984, On the discrepancy principle for the solution of ill-posed problems, Uch. Zap. Tartu. Gos. Univ., 672, 16

Raus, 1985, The principle of the residual in the solution of ill-posed problems with nonselfadjoint operator, Tartu Riikl. Ül. Toimetised, 12

Raus, 1990, An a posteriori choice of the regularization parameter in case of approximately given error bound of data, 73

Raus, 1992, About regularization parameter choice in case of approximately given error bounds of data

Raus, 2007, On the quasioptimal regularization parameter choices for solving ill-posed problems, J. Inverse Ill-posed Probl., 15, 419, 10.1515/jiip.2007.023

Raus, 2009, New rule for choice of the regularization parameter in (iterated) Tikhonov method, Math. Model. Anal., 14, 187, 10.3846/1392-6292.2009.14.187-198

Reginska, 1996, A regularization parameter in discrete ill-posed problems, SIAM J. Sci. Comput., 17, 740, 10.1137/S1064827593252672

Robinson, 1989, Making robust the cross-validatory choice of smoothing parameter in spline smoothing regression, Commun. Stat. Theory Methods, 18, 523, 10.1080/03610928908829916

Rust, 2000, Parameter selection for constrained solutions to ill-posed problems, Comput. Sci. Stat., 32, 333

Rust, 2008, Residual periodograms for choosing regularization parameters for ill-posed problems, Inverse Probl., 24, 034005, 10.1088/0266-5611/24/3/034005

Santos, 2003, A cheaper way to compute generalized cross-validation as a stopping rule for linear stationary iterative methods, J. Comput. Graph. Stat., 12, 417, 10.1198/1061860031815

Scherzer, 1993, Optimal a posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems, SIAM J. Numer. Anal., 30, 1796, 10.1137/0730091

Spokoiny, 2009, Parameter tuning in pointwise adaptation using a propagation approach, Ann. Stat., 37, 2783, 10.1214/08-AOS607

Tarantola, 1987

Tautenhahn, 1999, The use of monotonicity for choosing the regularization parameter in ill-posed problems, Inverse Probl., 15, 1487, 10.1088/0266-5611/15/6/307

Thompson, 1991, A study of methods for choosing the smoothing parameter in image restoration by regularization, IEEE Trans. Pattern Anal. Mach. Intell., 13, 3326, 10.1109/34.88568

Thompson, 1989, A cautionary note about crossvalidatory choice, J. Stat. Comput. Simul., 33, 199, 10.1080/00949658908811198

Tikhonov, 1977

Tikhonov, 1965, Use of the regularization method in non-linear problems, U.S.S.R. Comput. Math. Math. Phys., 5, 93, 10.1016/0041-5553(65)90150-3

Tsybakov, 2000, On the best rate of adaptive estimation in some inverse problems, C.R. Acad. Sci., Paris, Ser. I, Math., 330, 835, 10.1016/S0764-4442(00)00278-0

Vio, 2004, Estimation of regularization parameters in multiple-image deblurring, Astron. Astrophys., 423, 1179, 10.1051/0004-6361:20047113

Vogel, 1986, Optimal choice of a truncation level for the truncated SVD solution of linear first kind integral equations when data are noisy, SIAM J. Numer. Anal., 23, 109, 10.1137/0723007

Vogel, 1996, Non-convergence of the L-curve regularization parameter selection method, Inverse Probl., 12, 535, 10.1088/0266-5611/12/4/013

Vogel, 2002

Wahba, 1977, Practical approximate solutions to linear operator equations when the data are noisy, SIAM J. Numer. Anal., 14, 651, 10.1137/0714044

Wahba, 1985, A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem, Ann. Stat., 13, 1378, 10.1214/aos/1176349743

Wahba, 1990

Wahba, 1990, When is the optimal regularization parameter insensitive to the choice of the loss function?, Commun. Stat. Theory Methods, 19, 1685, 10.1080/03610929008830285

Wang, 1998, Smoothing spline models with correlated random errors, J. Am. Stat. Assoc., 93, 341, 10.1080/01621459.1998.10474115

Wecker, 1983, The signal extraction approach to nonlinear regression and spline smoothing, J. Am. Stat. Assoc., 78, 81, 10.1080/01621459.1983.10477935

Yagola, 2002, Data errors and an error estimation for ill-posed problems, Inverse Probl. Eng., 10, 117, 10.1080/10682760290031195