Comparing through-plane diffusibility correlations in PEFC gas diffusion layers using the lattice Boltzmann method
Tài liệu tham khảo
2015 fuel cell technologies market report – department of energy. http://energy.gov/sites/prod/files/2016/10/f33/fcto_2015_market_report.pdf.
Singdeo, 2014, Three dimensional computational fluid dynamics modelling of high temperature polymer electrolyte fuel cell, Appl Mech Mater, 492, 365, 10.4028/www.scientific.net/AMM.492.365
Wang, 2005, Transient analysis of polymer electrolyte fuel cells, Electrochimica Acta, 50, 1307, 10.1016/j.electacta.2004.08.022
Jeon, 2011, Numerical study of serpentine flow-field cooling plates on PEM fuel cells performance, Int J Energy Res, 37, 510, 10.1002/er.1930
Obayopo, 2011, Three-dimensional optimisation of a fuel gas channel of a proton exchange membrane fuel cell for maximum current density, Int J Energy Res, 37, 228, 10.1002/er.1935
Molaeimanesh, 2016, Lattice Boltzmann simulation of proton exchange membrane fuel cells – a review on opportunities and challenges, Int J Hydrogen Energy, 41, 22221, 10.1016/j.ijhydene.2016.09.211
Espinoza, 2016, Impact on diffusion parameters computation in gas diffusion layers, considering the Land/channel region, using the lattice Boltzmann method, ECS Trans, 75, 521, 10.1149/07514.0521ecst
Gao, 2015, Using MRT lattice Boltzmann method to simulate gas flow in simplified catalyst layer for different inlet–outlet pressure ratio, Int J Heat Mass Transf, 88, 122, 10.1016/j.ijheatmasstransfer.2015.04.031
Froning, 2016, Impact of compression on gas transport in non-woven gas diffusion layers of high temperature polymer electrolyte fuel cells, J Power Sources, 318, 26, 10.1016/j.jpowsour.2016.03.102
Espinoza, 2016, Predicting transport parameters in PEFC gas diffusion layers considering micro-architectural variations using the Lattice Boltzmann method, Int J Energy Res
García-Salaberri, 2015, Effective diffusivity in partially-saturated carbon-fiber gas diffusion layers: effect of through-plane saturation distribution, Int J Heat Mass Transf, 86, 319, 10.1016/j.ijheatmasstransfer.2015.02.073
Chen, 2016, Impact of PTFE content and distribution on liquid–gas flow in PEMFC carbon paper gas distribution layer: 3D lattice Boltzmann simulations, Int J Hydrogen Energy, 41, 8550, 10.1016/j.ijhydene.2016.02.159
Wu, 2014, Microstructure reconstruction and characterization of PEMFC electrodes, Int J Hydrogen Energy, 39, 15894, 10.1016/j.ijhydene.2014.03.074
Andisheh-Tadbir, 2015, An analytical relationship for calculating the effective diffusivity of micro-porous layers, Int J Hydrogen Energy, 40, 10242, 10.1016/j.ijhydene.2015.06.067
Hoogschagen, 1955, Diffusion in porous catalysts and adsorbents, Industrial Eng Chem, 47, 906, 10.1021/ie50545a016
Kaviany, 1995
Bruggeman, 1935, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen substanzen, Ann Der Phys, 416, 636, 10.1002/andp.19354160705
Neale, 1973, Prediction of transport processes within porous media: diffusive flow processes within an homogeneous swarm of spherical particles, AIChE J, 19, 112, 10.1002/aic.690190116
Zamel, 2009, Correlation for the effective gas diffusion coefficient in carbon paper diffusion media, Energy Fuels, 23, 6070, 10.1021/ef900653x
Yuan, 2014, On mechanisms and models of multi-component gas diffusion in porous structures of fuel cell electrodes, Int J Heat Mass Transf, 69, 358, 10.1016/j.ijheatmasstransfer.2013.10.032
Das, 2010, Effective transport coefficients in PEM fuel cell catalyst and gas diffusion layers: beyond Bruggeman approximation, Appl Energy, 87, 2785, 10.1016/j.apenergy.2009.05.006
Tomadakis, 1993, Ordinary and transition regime diffusion in random fiber structures, AIChE J, 39, 397, 10.1002/aic.690390304
Nam, 2003, Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium, Int J Heat Mass Transf, 46, 4595, 10.1016/S0017-9310(03)00305-3
Shojaeefard, 2016, A review on microstructure reconstruction of PEM fuel cells porous electrodes for pore scale simulation, Int J Hydrogen Energy, 41, 20276, 10.1016/j.ijhydene.2016.08.179
Gas diffusion layer comparison table. http://fuelcellsetc.com/helpful-tools/gas-diffusion-layer-gdl-comparison-chart/.
Inoue, 2008, Development of simulated gas diffusion layer of polymer electrolyte fuel cells and evaluation of its structure, J Power Sources, 175, 145, 10.1016/j.jpowsour.2007.09.014
Daino, 2012, 3D phase-differentiated GDL microstructure generation with binder and PTFE distributions, Int J Hydrogen Energy, 37, 5180, 10.1016/j.ijhydene.2011.12.050
Mohamad, 2011, 15
Bhatnagar, 1954, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys Rev, 94, 511, 10.1103/PhysRev.94.511
Sukop, 2006, 31
Qian, 1992, Lattice BGK models for navier-stokes equation, Europhys Lett (EPL), 17, 479, 10.1209/0295-5075/17/6/001
Zou, 1997, On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Phys Fluids, 9, 1591, 10.1063/1.869307
Espinoza Andaluz, 2015
Andersson, 2016, A review of cell-scale multiphase flow modeling, including water management, in polymer electrolyte fuel cells, Appl Energy, 180, 757, 10.1016/j.apenergy.2016.08.010
Froning, 2014, Stochastic aspects of mass transport in gas diffusion layers, Transp Porous Media, 103, 469, 10.1007/s11242-014-0312-9
Yoshino, 2003, Lattice Boltzmann simulations for flow and heat/mass transfer problems in a three-dimensional porous structure, Int J Numer Methods Fluids, 43, 183, 10.1002/fld.607
Sukop, 2006, 117
Nabovati, 2007, Fluid flow simulation in random porous media at pore level using lattice Boltzmann method, New Trends Fluid Mech Res, 518, 10.1007/978-3-540-75995-9_172
D'Orazio, 2003, Boundary conditions for thermal lattice Boltzmann simulations, Comput Sci — ICCS, 2003, 977
Ritter, 2011, 97
McCallum Layton & Co. Home page: https://www.mccallum-ayton.co.uk/tools/statistic-calculators/confidence-interval-for-mean-calculator/#confidence-interval-for-mean-calculator.