Comparing the morphologies and adsorption behavior of electrospun polystyrene composite fibers with 0D fullerenes, 1D multiwalled carbon nanotubes and 2D graphene oxides
Tài liệu tham khảo
Roduner, 2006, Size matters: why nanomaterials are different, Chem. Soc. Rev., 35, 583, 10.1039/b502142c
Yang, 2010, Adsorption of organic compounds by carbon nanomaterials in aqueous phase: polanyi theory and its application, Chem. Rev., 110, 5989, 10.1021/cr100059s
Qu, 2013, Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse, Acc. Chem. Res., 46, 834, 10.1021/ar300029v
Gleiter, 2000, Nanostructured materials: basic concepts and microstructure, Acta Mater., 48, 1, 10.1016/S1359-6454(99)00285-2
Pokropivny, 2007, Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science, Mater. Sci. Eng. C, 27, 990, 10.1016/j.msec.2006.09.023
Apul, 2017, Superfine powdered activated carbon incorporated into electrospun polystyrene fibers preserve adsorption capacity, Sci. Total Environ., 592, 458, 10.1016/j.scitotenv.2017.03.126
Westerhoff, 2016, Overcoming implementation barriers for nanotechnology in drinking water treatment, Environ. Sci. Nano, 3, 1241, 10.1039/C6EN00183A
Ahmed, 2015, A review on electrospinning for membrane fabrication: challenges and applications, Desalination, 356, 15, 10.1016/j.desal.2014.09.033
Mazoochi, 2012, Investigation on the morphological characteristics of nanofiberous membrane as electrospun in the different processing parameters, Int. J. Ind. Chem., 3, 1, 10.1186/2228-5547-3-2
Bayley, 2012, Porous microfibers by the electrospinning of amphiphilic graft copolymer solutions with multi-walled carbon nanotubes, Polymer, 53, 5523, 10.1016/j.polymer.2012.08.058
Aliahmad, 2021, Electrospun thermosetting carbon nanotube-epoxy nanofibers, ACS Appl. Polym. Mater., 3, 610, 10.1021/acsapm.0c00519
Selatile, 2021, Morphological, thermal, and mechanical properties of electrospun recycled poly(ethylene terephthalate)/graphene oxide composite nanofiber membranes, ACS Omega, 6, 21005, 10.1021/acsomega.1c02578
Zhang, 2021, Recent developments of electrospun nanofibrous materials as novel adsorbents for water treatment, Mater. Today Commun., 27
Bassyouni, 2019, Fabrication and characterization of electrospun Fe3O4/o-MWCNTs/polyamide 6 hybrid nanofibrous membrane composite as an efficient and recoverable adsorbent for removal of Pb (II), Microchem. J., 149, 10.1016/j.microc.2019.103998
Zhang, 2009, Design of ultra-fine nonwovens via electrospinning of nylon 6: spinning parameters and filtration efficiency, Mater. Des., 30, 3659, 10.1016/j.matdes.2009.02.017
Parandeh, 2019, An eco-friendly triboelectric hybrid nanogenerators based on graphene oxide incorporated polycaprolactone fibers and cellulose paper, Nano Energy, 59, 412, 10.1016/j.nanoen.2019.02.058
Omastová, 2019, Electrospinning of ethylene vinyl acetate/carbon nanotube nanocomposite fibers, Polymers, 11, 10.3390/polym11030550
Cui, 2020, Electrospun nanofiber membranes for wastewater treatment applications, Sep. Purif. Technol., 250, 10.1016/j.seppur.2020.117116
MacÍas, 2005, Electrospun mesoporous metal oxide fibers, Microporous Mesoporous Mater., 86, 1, 10.1016/j.micromeso.2005.05.053
Mailley, 2021, A review on the impact of humidity during electrospinning: from the nanofiber structure engineering to the applications, Macromol. Mater. Eng., 306, 1, 10.1002/mame.202100115
Abdel-Mottaleb, 2019, Removal of hexavalent chromium by electrospun PAN/GO decorated ZnO, J. Mech. Behav. Biomed. Mater., 98, 205, 10.1016/j.jmbbm.2019.06.025
Zhu, 2021, A critical review on the electrospun nanofibrous membranes for the adsorption of heavy metals in water treatment, J. Hazard. Mater., 401, 10.1016/j.jhazmat.2020.123608
De Farias, 2021, Electrospun polystyrene/graphene oxide fibers applied to the remediation of dye wastewater, Mater. Chem. Phys., 276
Xiao, 2018, Graphene/nanofiber aerogels: performance regulation towards multiple applications in dye adsorption and oil/water separation, Chem. Eng. J., 338, 202, 10.1016/j.cej.2017.12.156
Wu, 2017, CNTs reinforced super-hydrophobic-oleophilic electrospun polystyrene oil sorbent for enhanced sorption capacity and reusability, Chem. Eng. J., 314, 526, 10.1016/j.cej.2016.12.010
Taurozzi, 2012
Casper, 2004, Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process, Macromolecules, 573, 10.1021/ma0351975
Fong, 1999, Beaded Nanofibers Formed during Electrospinning, Polymer, 40, 4585, 10.1016/S0032-3861(99)00068-3
Leach, 2010, Electrospinning fundamentals: optimizing solution and apparatus parameters, J. Vis. Exp., 47, 2
Thavasi, 2008, Electrospun nanofibers in energy and environmental applications, Energy Environ. Sci., 1, 205, 10.1039/b809074m
Yang, 2004, Influence of solvents on the formation of ultrathin uniform poly(Vinyl Pyrrolidone) nanofibers with electrospinning, J. Polym. Sci. Part B Polym. Phys., 42, 3721, 10.1002/polb.20222
Reitzenstein, 2016, Structure, and properties of metal oxide/polymer nanocomposite electrospun mats, J. Appl. Polym. Sci., 133, 1
Park, 2013, Controlled assembly of graphene oxide nanosheets within one-dimensional polymer nanostructure, J. Colloid Interface Sci., 406, 24, 10.1016/j.jcis.2013.03.072
Zhao, 2018, Electrospun bead-on-string fibers: useless or something of value?, 87
Park, 2013, Porous nitrogen doped carbon fiber with churros morphology derived from electrospun bicomponent polymer as highly efficient electrocatalyst for Zn-air batteries, J. Power Sources, 243, 267, 10.1016/j.jpowsour.2013.06.025
Peng, 2003, Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes, Chem. Phys. Lett., 376, 154, 10.1016/S0009-2614(03)00960-6
Wang, 2005, Sorption of 243Am(III) to multiwall carbon nanotubes, Environ. Sci. Technol., 39, 2856, 10.1021/es048287d
Liu, 2003, Highly effective metal vapor absorbents based on carbon nanotubes, Appl. Phys. Lett., 81, 4844, 10.1063/1.1530740
Hilding, 2001, Sorption of butane on carbon multiwall nanotubes at room temperature, Langmuir, 17, 7540, 10.1021/la010131t
Li, 2002, Lead adsorption on carbon nanotubes, Chem. Phys. Lett., 357, 263, 10.1016/S0009-2614(02)00502-X
Szewczyk, 2020, The impact of relative humidity on electrospun polymer fibers: from structural changes to fiber morphology, Adv. Colloid Interface Sci., 286, 10.1016/j.cis.2020.102315
Megelski, 2002, Micro- and nanostructured surface morphology on electrospun polymer fibers, Macromolecules, 35, 8456, 10.1021/ma020444a
Medeiros, 2008, Effect of relative humidity on the morphology of electrospun polymer fibers, Can. J. Chem., 86, 590, 10.1139/v08-029
Huang, 2003, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Technol., 63, 2223, 10.1016/S0266-3538(03)00178-7
Caruso, 2001, Multilayered titania, silica, and laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres, Chem. Mater., 13, 400, 10.1021/cm001175a
Kim, 2005, Investigation of pore formation for polystyrene electrospun fiber: effect of relative humidity, Korean J. Chem. Eng., 22, 783, 10.1007/BF02705799
Doshi, 1995, Electrospinning process and applications of electrospun fibers, J. Electrost., 151, 10.1016/0304-3886(95)00041-8
Villarroel Rocha, 2011, Improvement in the pore size distribution for ordered mesoporous materials with cylindrical and spherical pores using the kelvin equation, Top. Catal., 54, 121, 10.1007/s11244-011-9631-z
Apul, 2015, Mechanisms and modeling of halogenated aliphatic contaminant adsorption by carbon nanotubes, J. Hazard. Mater., 295, 138, 10.1016/j.jhazmat.2015.04.030
Kronberg, 1995, Thermodynamics of the hydrophobic effect in surfactant solutions—micellization and adsorption, Pure Appl. Chem., 67, 897, 10.1351/pac199567060897
Apul, 2013, Adsorption of aromatic organic contaminants by graphene nanosheets: comparison with carbon nanotubes and activated carbon, Water Res., 47, 1648, 10.1016/j.watres.2012.12.031
Lee, 2013, Electrospun polystyrene nanofiber membrane with superhydrophobicity and superoleophilicity for selective separation of water and low viscous oil, ACS Appl. Mater. Interfaces, 5, 10597, 10.1021/am404156k