Comparing the morphologies and adsorption behavior of electrospun polystyrene composite fibers with 0D fullerenes, 1D multiwalled carbon nanotubes and 2D graphene oxides

Chemical Engineering Journal Advances - Tập 9 - Trang 100199 - 2022
Natalia Hoogesteijn von Reitzenstein1, Busra Sonmez Baghirzade2, Emmy Pruitt1, Kiril Hristovski3, Paul Westerhoff1, Onur G. Apul4
1Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and The Built Environment, Arizona State University, Box 3005, Tempe, AZ 85287, USA
2Department of Civil and Environmental Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
3The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, AZ 85212, USA
4Department of Civil and Environmental Engineering, University of Maine, Orono, ME 04469, USA

Tài liệu tham khảo

Roduner, 2006, Size matters: why nanomaterials are different, Chem. Soc. Rev., 35, 583, 10.1039/b502142c Yang, 2010, Adsorption of organic compounds by carbon nanomaterials in aqueous phase: polanyi theory and its application, Chem. Rev., 110, 5989, 10.1021/cr100059s Qu, 2013, Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse, Acc. Chem. Res., 46, 834, 10.1021/ar300029v Gleiter, 2000, Nanostructured materials: basic concepts and microstructure, Acta Mater., 48, 1, 10.1016/S1359-6454(99)00285-2 Pokropivny, 2007, Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science, Mater. Sci. Eng. C, 27, 990, 10.1016/j.msec.2006.09.023 Apul, 2017, Superfine powdered activated carbon incorporated into electrospun polystyrene fibers preserve adsorption capacity, Sci. Total Environ., 592, 458, 10.1016/j.scitotenv.2017.03.126 Westerhoff, 2016, Overcoming implementation barriers for nanotechnology in drinking water treatment, Environ. Sci. Nano, 3, 1241, 10.1039/C6EN00183A Ahmed, 2015, A review on electrospinning for membrane fabrication: challenges and applications, Desalination, 356, 15, 10.1016/j.desal.2014.09.033 Mazoochi, 2012, Investigation on the morphological characteristics of nanofiberous membrane as electrospun in the different processing parameters, Int. J. Ind. Chem., 3, 1, 10.1186/2228-5547-3-2 Bayley, 2012, Porous microfibers by the electrospinning of amphiphilic graft copolymer solutions with multi-walled carbon nanotubes, Polymer, 53, 5523, 10.1016/j.polymer.2012.08.058 Aliahmad, 2021, Electrospun thermosetting carbon nanotube-epoxy nanofibers, ACS Appl. Polym. Mater., 3, 610, 10.1021/acsapm.0c00519 Selatile, 2021, Morphological, thermal, and mechanical properties of electrospun recycled poly(ethylene terephthalate)/graphene oxide composite nanofiber membranes, ACS Omega, 6, 21005, 10.1021/acsomega.1c02578 Zhang, 2021, Recent developments of electrospun nanofibrous materials as novel adsorbents for water treatment, Mater. Today Commun., 27 Bassyouni, 2019, Fabrication and characterization of electrospun Fe3O4/o-MWCNTs/polyamide 6 hybrid nanofibrous membrane composite as an efficient and recoverable adsorbent for removal of Pb (II), Microchem. J., 149, 10.1016/j.microc.2019.103998 Zhang, 2009, Design of ultra-fine nonwovens via electrospinning of nylon 6: spinning parameters and filtration efficiency, Mater. Des., 30, 3659, 10.1016/j.matdes.2009.02.017 Parandeh, 2019, An eco-friendly triboelectric hybrid nanogenerators based on graphene oxide incorporated polycaprolactone fibers and cellulose paper, Nano Energy, 59, 412, 10.1016/j.nanoen.2019.02.058 Omastová, 2019, Electrospinning of ethylene vinyl acetate/carbon nanotube nanocomposite fibers, Polymers, 11, 10.3390/polym11030550 Cui, 2020, Electrospun nanofiber membranes for wastewater treatment applications, Sep. Purif. Technol., 250, 10.1016/j.seppur.2020.117116 MacÍas, 2005, Electrospun mesoporous metal oxide fibers, Microporous Mesoporous Mater., 86, 1, 10.1016/j.micromeso.2005.05.053 Mailley, 2021, A review on the impact of humidity during electrospinning: from the nanofiber structure engineering to the applications, Macromol. Mater. Eng., 306, 1, 10.1002/mame.202100115 Abdel-Mottaleb, 2019, Removal of hexavalent chromium by electrospun PAN/GO decorated ZnO, J. Mech. Behav. Biomed. Mater., 98, 205, 10.1016/j.jmbbm.2019.06.025 Zhu, 2021, A critical review on the electrospun nanofibrous membranes for the adsorption of heavy metals in water treatment, J. Hazard. Mater., 401, 10.1016/j.jhazmat.2020.123608 De Farias, 2021, Electrospun polystyrene/graphene oxide fibers applied to the remediation of dye wastewater, Mater. Chem. Phys., 276 Xiao, 2018, Graphene/nanofiber aerogels: performance regulation towards multiple applications in dye adsorption and oil/water separation, Chem. Eng. J., 338, 202, 10.1016/j.cej.2017.12.156 Wu, 2017, CNTs reinforced super-hydrophobic-oleophilic electrospun polystyrene oil sorbent for enhanced sorption capacity and reusability, Chem. Eng. J., 314, 526, 10.1016/j.cej.2016.12.010 Taurozzi, 2012 Casper, 2004, Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process, Macromolecules, 573, 10.1021/ma0351975 Fong, 1999, Beaded Nanofibers Formed during Electrospinning, Polymer, 40, 4585, 10.1016/S0032-3861(99)00068-3 Leach, 2010, Electrospinning fundamentals: optimizing solution and apparatus parameters, J. Vis. Exp., 47, 2 Thavasi, 2008, Electrospun nanofibers in energy and environmental applications, Energy Environ. Sci., 1, 205, 10.1039/b809074m Yang, 2004, Influence of solvents on the formation of ultrathin uniform poly(Vinyl Pyrrolidone) nanofibers with electrospinning, J. Polym. Sci. Part B Polym. Phys., 42, 3721, 10.1002/polb.20222 Reitzenstein, 2016, Structure, and properties of metal oxide/polymer nanocomposite electrospun mats, J. Appl. Polym. Sci., 133, 1 Park, 2013, Controlled assembly of graphene oxide nanosheets within one-dimensional polymer nanostructure, J. Colloid Interface Sci., 406, 24, 10.1016/j.jcis.2013.03.072 Zhao, 2018, Electrospun bead-on-string fibers: useless or something of value?, 87 Park, 2013, Porous nitrogen doped carbon fiber with churros morphology derived from electrospun bicomponent polymer as highly efficient electrocatalyst for Zn-air batteries, J. Power Sources, 243, 267, 10.1016/j.jpowsour.2013.06.025 Peng, 2003, Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes, Chem. Phys. Lett., 376, 154, 10.1016/S0009-2614(03)00960-6 Wang, 2005, Sorption of 243Am(III) to multiwall carbon nanotubes, Environ. Sci. Technol., 39, 2856, 10.1021/es048287d Liu, 2003, Highly effective metal vapor absorbents based on carbon nanotubes, Appl. Phys. Lett., 81, 4844, 10.1063/1.1530740 Hilding, 2001, Sorption of butane on carbon multiwall nanotubes at room temperature, Langmuir, 17, 7540, 10.1021/la010131t Li, 2002, Lead adsorption on carbon nanotubes, Chem. Phys. Lett., 357, 263, 10.1016/S0009-2614(02)00502-X Szewczyk, 2020, The impact of relative humidity on electrospun polymer fibers: from structural changes to fiber morphology, Adv. Colloid Interface Sci., 286, 10.1016/j.cis.2020.102315 Megelski, 2002, Micro- and nanostructured surface morphology on electrospun polymer fibers, Macromolecules, 35, 8456, 10.1021/ma020444a Medeiros, 2008, Effect of relative humidity on the morphology of electrospun polymer fibers, Can. J. Chem., 86, 590, 10.1139/v08-029 Huang, 2003, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Technol., 63, 2223, 10.1016/S0266-3538(03)00178-7 Caruso, 2001, Multilayered titania, silica, and laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres, Chem. Mater., 13, 400, 10.1021/cm001175a Kim, 2005, Investigation of pore formation for polystyrene electrospun fiber: effect of relative humidity, Korean J. Chem. Eng., 22, 783, 10.1007/BF02705799 Doshi, 1995, Electrospinning process and applications of electrospun fibers, J. Electrost., 151, 10.1016/0304-3886(95)00041-8 Villarroel Rocha, 2011, Improvement in the pore size distribution for ordered mesoporous materials with cylindrical and spherical pores using the kelvin equation, Top. Catal., 54, 121, 10.1007/s11244-011-9631-z Apul, 2015, Mechanisms and modeling of halogenated aliphatic contaminant adsorption by carbon nanotubes, J. Hazard. Mater., 295, 138, 10.1016/j.jhazmat.2015.04.030 Kronberg, 1995, Thermodynamics of the hydrophobic effect in surfactant solutions—micellization and adsorption, Pure Appl. Chem., 67, 897, 10.1351/pac199567060897 Apul, 2013, Adsorption of aromatic organic contaminants by graphene nanosheets: comparison with carbon nanotubes and activated carbon, Water Res., 47, 1648, 10.1016/j.watres.2012.12.031 Lee, 2013, Electrospun polystyrene nanofiber membrane with superhydrophobicity and superoleophilicity for selective separation of water and low viscous oil, ACS Appl. Mater. Interfaces, 5, 10597, 10.1021/am404156k