Comparing scenario reduction methods for stochastic transmission planning
Tóm tắt
Từ khóa
Tài liệu tham khảo
Sauma E.E., 2006, Proactive planning and valuation of transmission investments in restructured electricity markets, J. Regul. Econ., 30, 358, 10.1007/s11149-006-9012-x
Pozo D., 2013, If you build it, he will come: antici‐pative power transmission planning, Energy Econ., 36, 135, 10.1016/j.eneco.2012.12.007
Li A. Gobbs B.F. Ho J. et al.: ‘Co‐optimization of transmission and other supply resources’ Prepared for NARUC 2013
Awad M., 2010, Restructured electric power systems: analysis of electricity markets with equilibrium models
Weijde A.H., 2012, The economics of planning electricity transmission to accommodate renewables: using two‐stage optimisation to evaluate flexibility and the cost of disregarding uncertainty, Energy Econ., 34, 2089, 10.1016/j.eneco.2012.02.015
Wong W. Chao H. Julian D. et al.:at‘Transmission planning in a deregulated environment’.IEEE Transmission and Distribution Conf. New Orleans LA USA vol. 1 April1999 pp.350–355
Sun Z. Li W. Zhu J. et al.: ‘a planning method for siting and sizing of distributed generation based on chance‐constrained programming’.Int. Conf. on Electric Utility Deregulation and Restructuring and Power Technologies Changsha China 2015 pp.527–531
Hannan J., 1957, Contributions to the theory of games, volume III, annals of mathematics Studies, 97
‘2011–2012 Transmission Plan’ California ISO Technical Report March2012
‘Transmission Economic Assessment Methodology’ CAISO Technical Report June 2014
‘Regional Generation Outlet Study’ MW ISO Technical Report November2010
Bhattacharya A., 2016, Managing energy storage in microgrids: a multistage stochastic programming approach, IEEE Trans. Smart Grid
Qiu T. Xu B. Wang Y. et al.: ‘Stochastic multistage coplanning of transmission expansion and energy storage’ 2017 30 (1) pp.643–651
Ho J. Hobbs B.F. Donohoo‐Vallett P. et al.: ‘Planning transmission for uncertainty: applications and lessons for the western interconnection’ Report prepared for the (WECC) and Lawrence Berkeley National Laboratory 2016
Dupačová J., 2003, Scenario reduction in stochastic programming: an approach using probability metrics, Math. Program., 95, 493, 10.1007/s10107-002-0331-0
Gröwe‐Kuska N. Heitsch H. Römisch W.: ‘Scenario reduction and scenario tree construction for power management problems’.Proc. IEEE PowerTech 3 Bologna Italy 2003
Dvorkin Y. Wang Y. Pandzic H. et al.: ‘Comparison of scenario reduction techniques for the stochastic unit commitment’.Proc. 2014 IEEE Power & Energy Society General Meeting National harbor MD USA 2014 pp.1–5
Loomes G., 1982, Regret theory: an alternative theory of rational choice under uncertainty, Econ. J., 92, 805, 10.2307/2232669