Comparing interactive and automated mapping systems for supporting fisheries enforcement activities—a case study on vessel monitoring systems (VMS)
Tóm tắt
Từ khóa
Tài liệu tham khảo
Andrienko N, Andrienko G (2007) Designing visual analytics methods for massive collections of movement data. Cartographica 42:117–138
Andrienko N, Andrienko G (2008) Supporting visual exploration of massive movement data. In: Proceedings of the working conference on advanced visual interfaces. ACM, Napoli, pp 474–475
Andrienko G, Andrienko N, Fischer R, Mues V, Schuck A (2006) Reactions to geovisualization: an experience from a European project. Int J Geogr Inf Sci 20:1149–1171
Andrienko G, Andrienko N, Jankowski P, Keim DA, Kraak M-J, MacEachren AM, Wrobel S (2007a) Geovisual analytics for spatial decision support: setting the research agenda. Int J Geogr Inf Sci 21:839–857
Andrienko G, Andrienko N, Wrobel S (2007b) Visual analytics tools for analysis of movement data. ACM SIGKDD Explor Newsl 9:38–46
Andrienko G, Andrienko N, Dykes J, Fabrikant SI, Wachowicz M (2008) Geovisualization of dynamics, movement and change: key issues and developing approaches in visualization research. Inf Vis 7:173–180
Andrienko G, Andrienko N, Heurich M (2011a) An event-based conceptual model for context-aware movement analysis. Int J Geogr Inf Sci 25:1347–1370
Andrienko G, Andrienko N, Hurter C, Rinzivillo S, Wrobel S (2011b) From movement tracks through events to places: extracting and characterizing significant places from mobility data. In: IEEE S Vis Anal. IEEE, Providence, pp 159–168
Bertrand S, Bertrand A, Guevara-Carrasco R, Gerlotto F (2007) Scale-invariant movements of fishermen: the same foraging strategy as natural predators. Ecol Appl 17:331–337
Chang S-K, Liu K-Y, Song Y-H (2010) Distant water fisheries development and vessel monitoring system implementation in Taiwan—history and driving forces. Mar Policy 34:541–548
Chen Z, Shen H, Zhou X (2011) Discovering popular routes from trajectories. In: Proceedings of the 27th International Conference on Data Engineering. Hannover, Germany, pp 900–911
Demšar U, Virrantaus K (2010) Space–time density of trajectories: exploring spatio-temporal patterns in movement data. Int J Geogr Inf Sci 24:1527–1542
Deng R, Dichmont C, Milton D, Haywood M, Vance D, Hall N, Die D (2005) Can vessel monitoring system data also be used to study trawling intensity and population depletion? The example of Australia’s northern prawn fishery. Can J Fish Aquat Sci 62:611–622
Dodge S, Weibel R, Lautenschütz A-K (2008) Towards a taxonomy of movement patterns. Inf Vis 7:240–252
Eagle N, Pentland AS (2009) Eigenbehaviors: identifying structure in routine. Behav Ecol Sociobiol 63:1057–1066
Enguehard RA, Devillers R, Hoeber O (2011) Geovisualization of fishing vessel movement patterns using hybrid fractal / velocity signatures. In: Proceedings of the 2011 International GeoViz Workshop. Hamburg, Germany, pp 1–2
Enguehard RA, Hoeber O, Devillers R (2012) Interactive exploration of movement data: a case study of geovisual analytics for fishing vessel analysis. Inf Vis. doi: 10.1177/1473871612456121
Gurarie E, Andrews RD, Laidre KL (2009) A novel method for identifying behavioural changes in animal movement data. Ecol Lett 12:395–408
Hintzen NT, Piet GJ, Brunel T (2010) Improved estimation of trawling tracks using cubic Hermite spline interpolation of position registration data. Fish Res 101:108–115
Hintzen NT, Bastardie F, Beare D, Piet GJ, Ulrich C, Deporte N, Egekvist J, Degel H (2012) VMStools: open-source software for the processing, analysis and visualisation of fisheries logbook and VMS data. Fish Res 115–116:31–43
Hu W, Xiao X, Fu Z, Xie D, Tan T, Maybank S (2006) A system for learning statistical motion patterns. IEEE Trans Pattern Anal Mach Intell 28:1450–1464
Jennings S, Lee J (2012) Defining fishing grounds with vessel monitoring system data. ICES J Mar Sci 69:51–63
Jern M, Åström T, Johansson S (2008) GeoAnalytics tools applied to large geospatial datasets. In: IEEE Infor Vis. IEEE, Columbus, pp 362–372
Johansson S, Jern M (2007) GeoAnalytics visual inquiry and filtering tools in parallel coordinates plots. In: Proceedings of the 15th annual ACM international symposium on advances in geographic information systems. ACM, Seattle, pp 1–8
Kim, R, Hogan, P (2011) World Wind JAVA SDK http://worldwind.arc.nasa.gov/java/ . Accessed 08 December 2011
Kwan M-P (2000) Interactive geovisualization of activity-travel patterns using three-dimensional geographical information systems: a methodological exploration with a large data set. Transport Res C-Emer 8:185–203
Laxhammar R, Falkman G, Sviestins E (2009) Anomaly detection in sea traffic—a comparison of the Gaussian mixture model and the kernel density estimator. In: Proceedings of the 12th international conference on information fusion. IEEE, Seattle, pp 756–763
Lee J, South AB, Jennings S (2010) Developing reliable, repeatable, and accessible methods to provide high-resolution estimates of fishing-effort distributions from vessel monitoring system (VMS) data. ICES J Mar Sci 67:1260–1271
Lundblad P, Jern M, Forsell C (2008) Voyage analysis applied to geovisual analytics. In: IEEE Infor Vis. IEEE, Columbus, pp 381–388
Mårell A, Ball JP, Hofgaard A (2002) Foraging and movement paths of female reindeer: insights from fractal analysis, correlated random walks, and Lévy flights. Can J Zoolog 80:854–865
Mills CM, Townsend SE, Jennings S, Eastwood PD, Houghton CA (2006) Estimating high resolution trawl fishing effort from satellite-based vessel monitoring system data. ICES J Mar Sci 64:248–255
Molenaar EJ, Tsamenyi M (2000) Satellite-based vessel monitoring systems for fisheries management: international legal aspects. Int J Mar Coast Law 15:65–110
Mullowney DR, Dawe EG (2009) Development of performance indices for the Newfoundland and Labrador snow crab (Chionoecetes opilio) fishery using data from a vessel monitoring system. Fish Res 100:248–254
Murawski SA, Wigley SE, Fogarty MJ, Rago PJ, Mountain DG (2005) Effort distribution and catch patterns adjacent to temperate MPAs. ICES J Mar Sci 62:1150–1167
Nams VO (2005) Using animal movement paths to measure response to spatial scale. Oecologia 143:179–88
Ou P, Wang H (2009) Prediction of stock market index movement by ten data mining techniques. Mod Appl Sci 3:28–42
Raymond B, Hosie G (2009) Network-based exploration and visualisation of ecological data. Ecol Model 220:673–683
Rocha JAMR, Times VC, Oliveira G, Alvares LO, Bogorny V (2010) DB-SMoT: a direction-based spatio-temporal clustering method. In: Proceedings of the 5th IEEE international conference intelligent systems. IEEE, London, pp 114–119
Rodighiero D (2010) Guidelines to visualize vessels in a geographic information system. In: IEEE Infor Vis. IEEE, Salt Lake City, pp 455–459
Saitoh S-I, Mugo R, Radiarta IN, Asaga S, Takahashi F, Hirawake T, Ishikawa Y, Awaji T, In T, Shima S (2011) Some operational uses of satellite remote sensing and marine GIS for sustainable fisheries and aquaculture. ICES J Mar Sci 68:687–695
Schwehr KD, McGillivary PA (2007) Marine ship automatic identification system (AIS) for enhanced coastal security capabilities: an oil spill tracking application. In: Proceedings of the 2007 Oceans Conference. IEEE, Vancouver, pp 1–9
Shneiderman B, Plaisant C (2006) Strategies for evaluating information visualization tools. In: Proceedings of the 2006 AVI workshop on beyond time and errors novel evaluation methods for information visualization. ACM, Venice, pp 1–7
Thomas J, Cook K (2005) Illuminating the path: research and development agenda for visual analytics. IEEE Computer Society, Los Alamitos
Tomaszewski BM, Robinson AC, Weaver C, Stryker M, MacEachren AM (2007) Geovisual analytics and crisis management. In: Proceedings of the 4th international information systems for crisis response and management (ISCRAM) conference. Delft, Netherlands, pp 1–8
Tufte ER (2001) The visual display of quantitative information, 2nd edn. Graphics Press, Cheshire
Ware C (2004) Information visualization: perception for design, 2nd edn. Morgan Kaufmann, San Francisco
Willems N, van de Wetering H, van Wijk JJ (2009) Visualization of vessel movements. Comput Graph Forum 28:959–966
With KA (1994) Using fractal analysis to assess how species perceive landscape structure. Landscape Ecol 9:25–36
Witt MJ, Godley BJ (2007) A step towards seascape scale conservation: using vessel monitoring systems (VMS) to map fishing activity. PLoS One 2:e1111