Comparing Approaches for Simulating the Reactive Transport of U(VI) in Ground Water

Gary P. Curtis1, Matthias Köhler2, James A. Davis3
1US Geological Survey
2Department of Civil and Environmental Engineering, University of Maine, Orono, USA
3US Geological Survey, Menlo Park, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abdelouas A, Lutze W, Nuttall HE (1999) Uranium contamination in the subsurface: characterization and remediation. In: Uranium: mineralogy, geochemistry and the environment. Reviews in Mineralogy Series, vol 38. Mineralogical Society of America, Washington, pp 433–473

Barnett MO, Jardine PM, Brooks SC (2002) U(VI)adsorption to heterogeneous subsurface media: application of a surface complexation model. Environ Sci Technol 36(5):937–942

Bernhard G, Geipel G, Reich T, Brendler V, Amayri S, Nitsche H (2001) Uranyl(VI) carbonate complex formation: validation of the Ca2UO2(CO3)3 (aq) species. Radiochim Acta 89(8):511–518

Bethke CM, Brady PV (2000) How the Kd approach undermines ground water cleanup. Ground Water 38(3):435–443

Crowley KD, Ahearne JF (2002) Managing the environmental legacy of U.S. nuclear weapons production. Am Sci 90:514–523

Curtis GP (2005) Documentation and applications of the reactive geochemical transport model, RATEQ. Draft report for comment, Report NUREG/CR-6871, US Nuclear Regulatory Commission, Rockville, MD, USA

Curtis GP, Davis JA (2006) Tests of Uranium (VI) Adsorption Models in a Field Setting. Report NUREG/CR-6911, US Nuclear Regulatory Commission, Rockville, MD, USA

Curtis GP, Fox P, Kohler M, Davis JA (2004) Comparison of field uranium Kd values with a laboratory determined surface complexation model. Appl Geochem 19(10):1643–1653

Curtis GP, Davis JA, Naftz DL (2006) Simulation of reactive transport of uranium(VI) in ground water with variable chemical conditions. Water Resour Res 42(4):W04404. doi: 10.1029/2005WR003979

Davis JA, Curtis GP (2003) Application of Surface complexation modeling to describe Uranium(VI) adsorption and retardation at the uranium mill tailings site at Naturita, Colorado. Report NUREG CR-6820, US Nuclear Regulatory Commission, Rockville, MD, USA

Davis JA, Kent DB (1990) Surface complexation modeling in aqueous geochemistry. In: Mineral–water interface geochemistry. Reviews in mineralogy, vol 23. Mineralogical Society of America, Washington, pp 177–260

Davis JA, Coston JA, Kent DB, Fuller CC (1998) Application of the surface complexation concept to complex mineral assemblages. Environ Sci Technol 32(19):2820–2828

Davis JA, Payne TE, Waite TD (2002) Simulating the pH and pCO2 dependence of uranium(VI) adsorption by a weathered schist with surface complexation models. In: Geochemistry of soil radionuclides. Soil Science Society of America. Madison, pp 61–86

Davis JA, Meece DM, Kohler M, Curtis GP (2004) Approaches to surface complexation modeling of uranium(VI) adsorption on aquifer sediments. Geochim Cosmochim Acta 68(18):3621–3641

Davis JA, Curtis GP, Wilkins MJ, Kohler M, Fox PM, Naftz DL, Lloyd JR (2006) Processes affecting transport of uranium in a suboxic aquifer. Phys Chem Earth 31(10–14):548–555

Fox PM, Davis JA, Zachara JM (2006) The effect of calcium on aqueous uranium (VI) speciation and adsorption to ferrihydrite and quartz. Geochim Cosmochim Acta 70(6):1379–1387

Glynn PD (2003) Modeling Np and Pu transport with a surface complexation model and spatially variant sorption capacities: implications for reactive transport modeling and performance assessments of nuclear waste disposal sites. Comput Geosci 29(3):331–349

Grenthe I, Fuger J, Konings RJM, Lemire RJ, Muller AJ, Nguyen-Trung C, Wanner H (1992) Chemical thermodynamics of uranium. In: Wanner H, Forest I (eds) Elsevier, Amsterdam, p 735

Gu BH, Wu WM, Ginder-Vogel MA, Yan H, Fields MW, Zhou J, Fendorf S, Criddle CS, Jardine PM (2005) Bioreduction of uranium in a contaminated soil column. Environ Sci Technol 39(13):4841–4847

Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the U.S. geological survey modular ground-water model—user guide to modularization concepts and the ground-water flow process. US Geological Survey OFR 00-92, pp 121

Kalmykov SN, Choppin GR (2000) Mixed Ca2+/UO2 2+/CO3 2− complex formation at different ionic strengths. Radiochim Acta 88(9–11):603–606

Kaplan DI, Kutnyakov IV, Gamerdinger AP, Serne RJ, Parker KE (2000) Gravel-corrected Kd values. Ground Water 38(6):851–857

Kent DB, Abrams RH, Davis JA, Coston JA, LeBlanc DR (2000) Modeling the influence of variable pH on the transport of zinc in a contaminated aquifer using semi-empirical surface complexation models. Water Resour Res 36(12):3411–3425

Kent DB, Wilkie JA, Davis JA (2007) Modeling the movement of a pH perturbation and its impact on adsorbed zinc and phosphate in a wastewater-contaminated aquifer. Water Resour Res 43(7):W07440. doi: 10.1029/2005WR004841

Kent DB, Davis JA, Joye JL, Curtis GP (2008) Influence of variable chemical conditions on EDTA-enhanced transport of metal ions in mildly acid ground water. Environ Pollut 153(1):44–52

Kohler M, Curtis GP, Kent DB, Davis JA (1996) Experimental investigation and modeling of uranium(VI) transport under variable chemical conditions. Water Resour Res 32(12):3539–3551

Kohler M, Meece DM, Curtis GP, Davis JA (2004) Methods for estimating adsorbed uranium(VI) and distribution coefficients in contaminated sediments. Environ Sci Technol 38(1):240–247

Krupka KM, Kaplan DI, Whelan G, Serne RJ, Mattigod SV (1999) Understanding variation in partition coefficient, K d values. The K d model, methods of measurements and application of chemical reaction codes. Review of geochemistry and available K d values for cadmium, cesium, chromium, lead, plutonium, radon, strontium, thorium, tritium (3H), and uranium, vol II, US Environmental Protection Agency 402-R-99-004B, p 209

Langmuir D (1997) Aqueous environmental chemistry. Prentice-Hall, Upper Saddle River, p 600

McFadden K, Brosseau DA, Beyeler WE, Updegraff CD (2001) Residual Radioactive Contamination from Decommissioning. User’s Manual, DandD Version 2.1, NUREG/CR-5512, vol 2 (SAND2001-0822P)

Pabalan RT, Turner DR, Bertetti FP, Prikryl JD (1998) Uranium(VI) sorption onto selected mineral surfaces: key geochemical parameters. In: Jenne E (ed) Adsorption of metals by geomedia. Academic Press, San Diego, pp 99–130

Rubin Y (2003) Applied stochastic hydrogeology. Oxford University Press, New York, p 391

Rubin Y, Hubbard S (2005) Hydrogeophysics. Water and science technology library 50. Springer, Netherlands, p 523

Um W, Serne RJ, Krupka KM (2007a) Surface complexation modeling of U(VI) sorption to Hanford sediment with varying geochemical conditions. Environ Sci Technol 41(10):3587–3592

Um W, Serne RJ, Brown CF, Last GV (2007b) U(VI) adsorption on aquifer sediments at the Hanford site. J Contam Hydrol 93(1–4):255–269

USDOE (1996) Programmatic environmental impact statement for the uranium mill tailings remedial action ground water Project. DOE/EIS-0198, vol I, US Department of Energy, Grand Junction, CO, USA, p 314

USDOE (2008) Naturita, Colorado, Processing and Disposal Sites Fact Sheet. http://www.lm.doe.gov/documents/sites/co/naturita_d/fact_sheet/naturita.pdf . Accessed 1 October 2008

Vrionis HA, Anderson RT, Ortiz-Benard I, O’Neill KR, Resch CT, Peacock AD, Dayvault R, White DC, Long PE, Lovely DR (2005) Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site. Appl Environ Microbiol 71(10):6308–6318

Waite TD, Davis JA, Payne TE, Waychunas GA, Xu N (1994) Uranium(VI) adsorption to ferrihydrite: application of a surface complexation model. Geochim Cosmochim Acta 58(24):5465–5478

Zheng C, Wang PP (1999) MT3DMS, a modular three-dimensional multi-species transport model for simulation of advection, dispersion and chemical reactions of contaminants in ground water systems; documentation and user’s guide. US Army Engineer Research and Development Center Contract Report SERDP-99-1, Vicksburg, MS, USA, p 202

Zhu C (2003) A case against Kd-based transport models: natural attenuation at a mill tailings site. Comput Geosci 29(3):351–359