Comparative toxicity of micro and nanopolystyrene particles in Mya arenaria clams

Marine Pollution Bulletin - Tập 192 - Trang 115052 - 2023
Chantale André1, Samuel Turgeon2, Caroline Peyrot3, Kevin James Wilkinson3, Joëlle Auclair1, Nadia Ménard2, François Gagné1
1Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill, Montréal, QC H2Y 2E7, Canada
2Parks Canada, Saguenay-St. Lawrence Marine Park, 182, Rue de l'Église, Tadoussac, QC G0T 2A0, Canada
3Chemistry Department, Montreal University, Montréal, Québec H2V 2B8, Canada

Tài liệu tham khảo

An, 2021, Size-dependent chronic toxicity of fragmented polyethylene microplastics to Daphnia magna, Chemosphere, 27 Arini, 2022, Early molecular responses of mangrove oysters to nanoplastics using a microfluidic device to mimic environmental exposure, J. Hazard. Mater., 436, 10.1016/j.jhazmat.2022.129283 Auclair, 2020, Detection, biophysical effects, and toxicity of polystyrene nanoparticles to the cnidarian Hydra attenuata, Environ. Sci. Pollut. Res. Int., 27, 11772, 10.1007/s11356-020-07728-1 Blaise, 2016, Three simple biomarkers useful in conducting water quality assessments with bivalve mollusks, Environ. Sci. Pollut. Res., 24, 27662, 10.1007/s11356-016-6908-6 Brandts, 2018, Effects of nanoplastics on Mytilus galloprovincialis after individual and combined exposure with carbamazepine, Sci. Total Environ., 643, 775, 10.1016/j.scitotenv.2018.06.257 Brun, 2019, Polystyrene nanoplastics disrupt glucose metabolism and cortisol levels with a possible link to behavioural changes in larval zebrafish, Commun. Biol., 2, 382, 10.1038/s42003-019-0629-6 Cabaleiro-Lago, 2010, Dual effect of amino modified polystyrene nanoparticles on amyloid β protein fibrillation, ACS Chem. Neurosci., 1, 279, 10.1021/cn900027u Canesi, 2016, Interactions of cationic polystyrene nanoparticles with marine bivalve hemocytes in a physiological environment: role of soluble hemolymph proteins, Environ. Res., 150, 73, 10.1016/j.envres.2016.05.045 Cao, 2022, Microplastics: a major source of phthalate esters in aquatic environments, J. Hazard. Mater., 432, 10.1016/j.jhazmat.2022.128731 Chae, 2018, Trophic transfer and individual impact of nano-sized polystyrene in a four-species freshwater food chain, Sci. Rep., 8, 284, 10.1038/s41598-017-18849-y Cui, 2001, Chemiluminescence of Ce(IV) and surfactant Tween 20, Analyst, 126, 553, 10.1039/b102215f De Leiva, 1976, Relation of pH to fluorescence of serotonin, melatonin, and other indole compounds reacted with o-phthaldialdehyde, Clin. Chem., 22, 1999, 10.1093/clinchem/22.12.1999 Debenest, 2012, DNA integrity assessment in hemocytes of soft-shell clams (Mya arenaria) in the Saguenay Fjord (Québec, Canada), Environ. Sci. Pollut. Res., 20, 621, 10.1007/s11356-012-0980-3 Ding, 2020, Toxicological effects of nano- and micro-polystyrene plastics on red tilapia: are larger plastic particles more harmless?, J. Hazard. Mater., 396, 10.1016/j.jhazmat.2020.122693 Gagné, 2019, Detection of polystyrene nanoplastics in biological tissues with a fluorescent molecular rotor probe, J. Xenobiotics, 9, 8147 Gagné, 2022, Spatial variation of soft shell clam biochemical health status-impacts on age pigments, glucose and melatonin status, Int. J. Biol. Environ. Investig., 2, 1, 10.33745/ijbei.2022.v02i02.001 Gagné, 2023, Evidence of polystyrene nanoplastic contamination and potential impacts in Mya arenaria clams in the Saint-Lawrence estuary (Canada), Comp. Biochem. Physiol. C Toxicol. Pharmacol., 266, 10.1016/j.cbpc.2023.109563 Greenspan, 1985, Nile red: a selective fluorescent stain for intracellular lipid droplets, J. Cell Biol., 100, 965, 10.1083/jcb.100.3.965 Guimarães, 2021, Toxicity of polystyrene nanoplastics in Ctenopharyngodon idella juveniles: a genotoxic, mutagenic and cytotoxic perspective, Sci. Total Environ., 752, 10.1016/j.scitotenv.2020.141937 Gulizia, 2023, Understanding plasticiser leaching from polystyrene microplastics, Sci. Total Environ., 857, 10.1016/j.scitotenv.2022.159099 Han, 2022, Potential toxicity of nanoplastics to fish and aquatic invertebrates: current understanding, mechanistic interpretation, and meta-analysis, J. Hazard. Mater., 427, 10.1016/j.jhazmat.2021.127870 Hazeem, 2020, Investigation of the toxic effects of different polystyrene micro-and nanoplastics on microalgae Chlorella vulgaris by analysis of cell viability, pigment content, oxidative stress and ultrastructural changes, Mar. Pollut. Bull., 156, 10.1016/j.marpolbul.2020.111278 Jambeck, 2015, Marine pollution. Plastic waste inputs from land into the ocean, Science, 347, 768, 10.1126/science.1260352 Jiang, 2021, Gradual effects of gradient concentrations of polystyrene nanoplastics on metabolic processes of the razor clams, Environ. Pollut., 287, 10.1016/j.envpol.2021.117631 Liu, 2021, Polystyrene nanoplastic induces oxidative stress, immune defense, and glycometabolism change in Daphnia pulex: application of transcriptome profiling in risk assessment of nanoplastics, J. Hazard. Mater., 402, 10.1016/j.jhazmat.2020.123778 Liu, 2023, Biodegradation of polystyrene (PS) by marine bacteria in mangrove ecosystem, J. Hazard. Mater., 442, 10.1016/j.jhazmat.2022.130056 Lu, 2002, Simple and convenient chemiluminescence method for the determination of melatonin, Anal. Chim. Acta, 455, 193, 10.1016/S0003-2670(01)01603-8 Magni, 2018, Evaluation of uptake and chronic toxicity of virgin polystyrene microbeads in freshwater zebra mussel Dreissena polymorpha (Mollusca: Bivalvia), STOTEN, 631–632, 778 Maity, 2023, High doses of nano-polystyrene aggravate the oxidative stress, DNA damage, and the cell death in onions, Environ. Pollut., 316, 10.1016/j.envpol.2022.120611 Meyer, 2000, Induction of 8-oxo-dGTPase activity in human lymphoid cells and normal fibroblasts by oxidative stress, Toxicology, 146, 83, 10.1016/S0300-483X(00)00140-2 Munro, 2013, Low hydrogen peroxide production in mitochondria of the long-lived Arctica islandica: underlying mechanisms for slow aging, Aging Cell, 12, 584, 10.1111/acel.12082 Odintsov, 2022, Degradation of micro-nano-sized polytetrafluoroethylene and acrylic fluorinated copolymer particles in the periwinkle digestive tract, Environ. Sci. Pollut. Res. Int., 30, 25972, 10.1007/s11356-022-23996-5 Ortiz, 2022, Insights into the degradation of microplastics by Fenton oxidation: from surface modification to mineralization, Chemosphere, 309, 10.1016/j.chemosphere.2022.136809 Rist, 2017, Ingestion of micro- and nanoplastics in Daphnia magna - quantification of body burdens and assessment of feeding rates and reproduction, Environ. Pollut., 228, 398, 10.1016/j.envpol.2017.05.048 Sarasamma, 2020, Nanoplastics cause neurobehavioral impairments, reproductive and oxidative damages, and biomarker responses in zebrafish: throwing up alarms of wide spread health risk of exposure, Int. J. Mol. Sci., 21, 1410, 10.3390/ijms21041410 Sendra, 2021, Size matters: zebrafish (Danio rerio) as a model to study toxicity of nanoplastics from cells to the whole organism, Environ. Pollut., 268, 115769, 10.1016/j.envpol.2020.115769 Sıkdokur, 2020, Effects of microplastics and mercury on manila clam Ruditapes philippinarum: feeding rate, immunomodulation, histopathology and oxidative stress, Environ. Pollut., 262, 10.1016/j.envpol.2020.114247 Sökmen, 2020, Polystyrene nanoplastics (20 nm) are able to bioaccumulate and cause oxidative DNA damages in the brain tissue of zebrafish embryo (Danio rerio), Neurotoxicology, 77, 51, 10.1016/j.neuro.2019.12.010 Tallec, 2019, Surface functionalization determines behavior of nanoplastic solutions in model aquatic environments, Chemosphere, 225, 639, 10.1016/j.chemosphere.2019.03.077 Urbina, 2023, Slow and steady hurts the crab: effects of chronic and acute microplastic exposures on a filter feeder crab, Sci. Total Environ., 857, 10.1016/j.scitotenv.2022.159135 Van Rensburg, 1991, Inactivation of poly (ADP-ribose) polymerase by hypochlorous acid, Free Radic. Biol. Med., 11, 285, 10.1016/0891-5849(91)90125-M Varó, 2019, Time-dependent effects of polystyrene nanoparticles in brine shrimp Artemia franciscana at physiological, biochemical and molecular levels, Sci. Total Environ., 675, 570, 10.1016/j.scitotenv.2019.04.157 Walter, 2022, Biodegradation of different PET variants from food containers by Ideonella sakaiensis, Arch. Microbiol., 204, 711, 10.1007/s00203-022-03306-w Wang, 2021, Physiological effects of plastic particles on mussels are mediated by food presence, J. Hazard. Mater., 404, 124, 10.1016/j.jhazmat.2020.124136 Webb, 2020, Biomarker responses in New Zealand green-lipped mussels Perna canaliculus exposed to microplastics and triclosan, Ecotoxicol. Environ. Saf., 201, 10.1016/j.ecoenv.2020.110871 Xing, 2011, An easy and efficient fluorescent method for detecting aldehydes and its application in biotransformation, J. Fluoresc., 21, 587, 10.1007/s10895-010-0746-6 Yoo, 2021, Effects of polystyrene in the brackish water flea Diaphanosoma celebensis: size-dependent acute toxicity, ingestion, egestion, and antioxidant response, Aquat. Toxicol., 235, 10.1016/j.aquatox.2021.105821 Zhou, 2023, Size-dependent toxicological effects of polystyrene microplastics in the shrimp Litopenaeus vannamei using a histomorphology, microbiome, and metabolic approach, Environ. Pollut., 316, 10.1016/j.envpol.2022.120635