Comparative study of three types of controllers for DFIG in wind energy conversion system
Tóm tắt
Từ khóa
Tài liệu tham khảo
Wu, B., Lang, Y., Zargari, N., & Kouro, S. (2011). Power conversion and control of wind energy systems. United States of America: John Wiley & Sons, Inc..
Muneer, A., Bilal-Kadri, M. (2013). Pitch angle control of DFIG using self-tuning neuro fuzzy controller. 2nd International Conference on Renewable Energy Research and Applications (ICRERA), Madrid, Spain, 20-23.
Tapia, A., Tapia, G., Ostolaza, J. X., & Saenz, J. R. (2003). Modeling and control of a wind turbine driven doubly fed induction generator. IEEE Transactions on energy conversion, 18(2), 194–204.
Aydin, E., Polat, A., Ergene, L.T. (2016). Vector control of DFIG in wind power applications. 5th international conference on renewable energy research and applications (ICRERA), Birmingham, UK, 20-23.
Arnalte, S., Burgos, J. C., & Rodriguez-Amenedo, J. L. (2002). Direct torque control of a doubly-fed induction generator for variable speed wind turbines. Electric power components and systems, 30(2), 199–216.
Amar, A. B. (2017). Direct torque control of a doubly fed induction generator. International Journal of Energetica, 2(1), 11–14.
Abad, G., Rodriguez, M. A., Iwanski, G., & Poza, J. (2010). Direct power control of doubly-fed-induction-generator-based wind turbines under unbalanced grid voltage. IEEE Trans Power Electron, 25(2), 442–452.
Vidal, Y., Acho, L., Luo, N., Zapateiro, M., & Pozo, F. (2012). Power control design for variable-speed wind turbines. Energies, 5, 3033–3050.
Broy, A., Tourou, P., Sourkounis, C. (2015). Transient behaviour and active damping of vibrations in DFIG-based wind turbines during grid disturbances. 4th International Conference on Renewable Energy Research and Applications (ICRERA), Italy, 22-25.
Giaourakis, D., Safacas, A., & Tsotoulidis, S. (2012). Dynamic behaviour of a wind energy conversion system including doubly-fed induction generator in fault conditions. International Journal of Renewable Energy Research, 2(2), 227–235.
Mohamed, Z., Eskander, M., & Ghali, A. (2001). Fuzzy logic control based maximum power tracking of a wind energy system. Renew Energy, 23(2), 235–245.
Lpez, P., Velo, R., & Maseda, F. (2008). Effect of direction on wind speed estimation in complex terrain using neural networks. Renew Energy, 33(10), 2266–2272.
Hostettler, J., & Wang, X. (2015). Sliding mode control of a permanent magnet synchronous generator for variable speed wind energy conversion systems. Journal Systems Science & Control Engineering, 3, 453–459.
Bourdoulis, M., Alexandridis, A. (2013). Rotor-side PI controller design of DFIG wind turbines based on direct power flow modeling, 2nd International Conference on Renewable Energy Research and Applications (ICRERA), Madrid, Spain, 20-23.
Sguarezi, A., & Ruppert, E. (2012). Model-based predictive control applied to the doubly-fed induction generator direct power control. IEEE Trans Sustain Energy, 3, 398–406.
Verij, K. M., Sadeghi, Y. A., & Kojabadi, H. K. (2010). Direct power control of DFIG based on discrete space vector modulation. Renew Energy, 35(5), 1033–1042.
Chikha, S., & Barra, K. (2016). Predictive control of variable speed wind energy conversion system with multi objective criterions. Periodica Polytechnica. Electrical Engineering and Computer Science, 60(2), 96.
Barambones, O. (2012). Sliding mode control strategy for wind turbine power maximization. Energies, 5, 2310–2330.
Khedher, A., Khemiri, N., & Mimouni, M. (2012). Wind energy conversion system using DFIG controlled by Backstepping and sliding mode strategies. International Journal of Renewable Energy Research, 2(3), 421–430.
Taraft, S., Rekioua, D., Aouzellag, D., & Bacha, S. (2015). A proposed strategy for power optimization of a wind energy conversion system connected to the grid. Journal of Energy Conversion and Management, 101, 489–502.
Beltran, B., & Benbouzid, A. (2012). Second-order sliding mode control of a doubly fed induction generator driven wind turbine. IEEE Transactions on Energy Conversion, 27(261-269), 2012.
Utkin, V. (1993). Sliding mode control design principles and applications to electric drives. IEEE Trans Ind Electron, 40(1), 23–36.
Slotine, J., & Li, W. (1998). Applied nonlinear control. USA: Prentice Hall.
Rivera, J., Garcia, L., Mora, C., Ortega, S. (2011). Super-twisting sliding mode in motion control systems, Sliding Mode Control, InTech,. https://www.intechopen.com/books/sliding-mode-control/super-twisting-sliding-mode-in-motion-control-systems .
Poitiers, F., Bouaouiche, T., & Machmoum, M. (2009). Advanced control of a doubly-fed induction generator for wind energy conversion. Elect Power Syst Res, 79(7), 1085–1096.
Abdelhafidh, M., Mahmoudi, M., Nezli, L., & Bouchhida, O. (2012). Modeling and control of a wind power conversion system based on the double-fed asynchronous generator. International Journal of Renewable Energy Research, 2(2), 300–306.
Adjoudj, M., Abid, M., Aissaoui, A., Ramdani, Y., & Bounoua, H. (2011). Sliding mode control of doubly fed induction generator for wind energy turbine. Rev Roum SciTechn-Électrotechn et Énerg, Bucarest, 56, 15–24.
Miranda, H., Cortes, P., & Yuz, J. (2009). Predictive torque control of induction machines based on state space models. IEEE Trans Ind Electron, 56(6), 1916–1924.
Beltran, B., Ahmed-Ali, T., & Benbouzid, M. (2008). Sliding mode power control of variable-speed wind energy conversion systems. IEEE Transactions on energy conversion, 23(2), 551–558.