Comparative study of the yield stress determination of cement pastes by different methods

Mokrane Bala1, R. Zentar1, Pascal Boustingorry2
1LGCgE-GCE, Institut Mines Telecom Lille-Douai, 764 bd Lahure, BP 10838, 59508, Douai, France
2CHRYSO France, 7 Rue de l'Europe, 45300 Sermaises du Loiret, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Tattersall GH, Banfill PFG (1983) The rheology of fresh concrete. Pitman, London

Hu C, de Larrard F (1996) The rheology of fresh high-performance concrete. Cem Concr Res 26:283–294. https://doi.org/10.1016/0008-8846(95)00213-8

Tan Z, Bernal SA, Provis JL (2017) Reproducible mini-slump test procedure for measuring the yield stress of cementitious pastes. Mater Struct 50:235. https://doi.org/10.1617/s11527-017-1103-x

Roussel N (2008) Ecoulement et mise en œuvre des bétons. Laboratoire Central des Ponts et Chaussées (LCPC), Paris

Flatt RJ, Bowen P (2006) Yodel: a yield stress model for suspensions. J Am Ceram Soc 89:1244–1256. https://doi.org/10.1111/j.1551-2916.2005.00888.x

Lee JH, Kim JH, Yoon JY (2018) Prediction of the yield stress of concrete considering the thickness of excess paste layer. Constr Build Mater 173:411–418. https://doi.org/10.1016/j.conbuildmat.2018.03.124

Mueller S, Llewellin EW, Mader HM (2009) The rheology of suspensions of solid particles. Proc R Soc Lond A Math Phys Eng Sci. https://doi.org/10.1098/rspa.2009.0445

Lowke D (2009) Interparticle forces and rheology of cement based suspensions. In: Proceedings of the 3rd international symposium on nanotechnology in construction. Springer, Berlin, Heidelberg, pp. 295–301. https://doi.org/10.1007/978-3-642-00980-8_39

Yammine J (2007) Rhéologie des bétons fluides à hautes performances: relations entre formulations, propriétés rhéologiques, physico-chimie et propriétés mécaniques. Ph.D. Thesis. École normale supérieure de Cachan

Rahman M, Wiklund J, Kotzé R, Håkansson U (2017) Yield stress of cement grouts. Tunn Undergr Space Technol 61:50–60. https://doi.org/10.1016/j.tust.2016.09.009

Vance K, Sant G, Neithalath N (2015) The rheology of cementitious suspensions: a closer look at experimental parameters and property determination using common rheological models. Cem Concr Compos 59:38–48. https://doi.org/10.1016/j.cemconcomp.2015.03.001

Yahia A, Khayat KH (2001) Analytical models for estimating yield stress of high-performance pseudoplastic grout. Cem Concr Res 31:731–738. https://doi.org/10.1016/s0008-8846(01)00476-8

Schwartzentruber L, Le Roy R, Cordin J (2006) Rheological behaviour of fresh cement pastes formulated from a Self Compacting Concrete (SCC). Cem Concr Res 36:1203–1213. https://doi.org/10.1016/j.cemconres.2004.10.036

Guo Y, Zhang T, Wei J et al (2017) Evaluating the distance between particles in fresh cement paste based on the yield stress and particle size. Constr Build Mater 142:109–116. https://doi.org/10.1016/j.conbuildmat.2017.03.055

Feys D, Cepuritis R, Jacobsen S et al (2018) Measuring rheological properties of cement pastes: most common techniques, procedures and challenges. Rilem Tech Lett 2:129–135. https://doi.org/10.21809/rilemtechlett.2017.43

Liddel PV, Boger DV (1996) Yield stress measurements with the vane. J Non-Newton Fluid Mech 63:235–261. https://doi.org/10.1016/0377-0257(95)01421-7

Banfill PFG (2006) Rheology of fresh cement and concrete. Rheol Rev 2006:61. https://doi.org/10.1201/9781482288889

Roussel N, Lemaître A, Flatt RJ, Coussot P (2010) Steady state flow of cement suspensions: a micromechanical state of the art. Cem Concr Res 40:77–84. https://doi.org/10.1016/j.cemconres.2009.08.026

Hot J (2013) Influence des polymères de type superplastifiants et agents entraineurs d’air sur la viscosité macroscopique des matériaux cimentaires. Ph.D. Thesis, Paris-Est University

Feys D, Verhoeven R, De Schutter G (2009) Why is fresh self-compacting concrete shear thickening? Cem Concr Res 39:510–523. https://doi.org/10.1016/j.cemconres.2009.03.004

Roussel N, Ovarlez G, Garrault S, Brumaud C (2012) The origins of thixotropy of fresh cement pastes. Cem Concr Res 42:148–157. https://doi.org/10.1016/j.cemconres.2011.09.004

Barnes HA (1997) Thixotropy—a review. J Non-Newton Fluid Mech 70:1–33. https://doi.org/10.1016/s0377-0257(97)00004-9

Tuyan M, Ahari RS, Erdem TK et al (2018) Influence of thixotropy determined by different test methods on formwork pressure of self-consolidating concrete. Constr Build Mater 173:189–200. https://doi.org/10.1016/j.conbuildmat.2018.04.046

Roussel N, Le Roy R, Coussot P (2004) Thixotropy modelling at local and macroscopic scales. J Non-Newton Fluid Mech 117:85–95. https://doi.org/10.1016/j.jnnfm.2004.01.001

Roussel N (2006) A thixotropy model for fresh fluid concretes: theory, validation and applications. Cem Concr Res 36:1797–1806. https://doi.org/10.1016/j.cemconres.2006.05.025

Ferrari L, Boustingorry P, Pineaud A, Bonafous L (2015) From cement grout to concrete scale: a study of superplasticizer-design-controlled thixotropy to match SCC application requirements. In: Proceedings of the 7th RILEM international conference on self-compacting concrete and of the 1st RILEM international conference on rheology and processing of construction materials, pp 285–292

Association Française de Normalisation (2012) Cement—part 1: composition, specifications and conformity criteria for common cements. Standard No. 197-1

Association Française de Normalisation (2012) Admixtures for concrete, mortar and grout—part 2: concrete admixtures—definitions, requirements, conformity, marking and labelling. Standard No. 934-2 + A1

Hot J, Roussel N (2012) Influence of adsorbing polymers on the macroscopic viscosity of concentrated cement pastes. Spec Publ 288:1–11

de Larrard F, Bosc F, Cathrine C, Deflorenne F (1996) La nouvelle méthode des coulis de l’AFREM pour la formulation des bétons à hautes performances. Bulletins des Laboratoires des ponts et chaussées

Sedran T, De Larrard F, Le Guen L (2007) Détermination de la compacité des ciments et additions minérales à la sonde de Vicat. Bulletin des Laboratoires des Ponts et Chaussées, pp–155

Hot J, Bessaies-Bey H, Brumaud C et al (2014) Adsorbing polymers and viscosity of cement pastes. Cem Concr Res 63:12–19. https://doi.org/10.1016/j.cemconres.2014.04.005

Qian Y, Kawashima S (2018) Distinguishing dynamic and static yield stress of fresh cement mortars through thixotropy. Cem Concr Compos 86:288–296. https://doi.org/10.1016/j.cemconcomp.2017.11.019

Fall A, Paredes J, Bonn D (2010) Yielding and shear banding in soft glassy materials. Phys Rev Lett 105:225502. https://doi.org/10.1103/physrevlett.105.225502

Schall P, van Hecke M (2010) Shear bands in matter with granularity. Annu Rev Fluid Mech. https://doi.org/10.1146/annurev-fluid-121108-145544

Jayasree C, Gettu R (2008) Experimental study of the flow behaviour of superplasticized cement paste. Mater Struct 41:1581–1593. https://doi.org/10.1617/s11527-008-9350-5

Güllü H (2016) Comparison of rheological models for jet grout cement mixtures with various stabilizers. Constr Build Mater 127:220–236. https://doi.org/10.1016/j.conbuildmat.2016.09.129

Mahaut F, Chateau X, Coussot P, Ovarlez G (2008) Yield stress and elastic modulus of suspensions of noncolloidal particles in yield stress fluids. J Rheol 52:287–313. https://doi.org/10.1122/1.2798234