Comparative study of the photocatalytic activity for hydrogen evolution of MFe 2 O 4 (M = Cu, Ni) prepared by three different methods

Aurora Soto-Arreola1, Ali M. Huerta-Flores2,1, J. Manuel Mora-Hernández3, Leticia M. Torres-Martı́nez1
1Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, México
2Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava #6, San Luis Potosí, S.L.P., 78290, Mexico
3CONACYT – Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, México

Tóm tắt

Từ khóa


Tài liệu tham khảo

Yang, 2017, Fabrication and behaviors of CdS on Bi2MoO6 thin films photoanodes, RSC Adv., 7, 10774, 10.1039/C6RA28323C

Liu, 2016, Direct observation of charge separation on anatase TiO2 crystals with selectivity etched {001} facets, Am. Chem. Soc., 138, 2917, 10.1021/jacs.5b12521

Karthigayan, 2017, Synthesis and characterization of NiFe2O4, CoFe2O4 and Cu Fe2O4 thin films for anode material in Li-ion batteries, Nanomater. Nanotechnol., 7, 1, 10.1177/1847980417711084

Fu, 2012, Copper ferrite-graphite hybrid: a multifunctional heteroarchitecture for photocatalysis and energy storage, Ind. Eng. Chem. Res., 51, 11700, 10.1021/ie301347j

Ji, 2015, Magnetic g-C3N4/NiFe2O4 hybrids with enhanced photocatalytic activity, RSC Adv., 5, 57960, 10.1039/C5RA07148H

Zuhadjri, 2016, Synthesis of znO-NiFe2O4 magnetic nanocomposites by simple solvothermal method for photocatalytic dye degradation under solar light, Orient. J. Chem., 32, 1411, 10.13005/ojc/320315

Lu, 2016, Facile fabrication of heterostructured cubic-CuFe2O4/ZnO nanofibers (c-CFZs) with enhanced visible-light photocatalytic activity and magnetic separation, RSC Adv., 6, 110155, 10.1039/C6RA23970F

Yao, 2015, Magnetic core-shell CuFe2O4@C3N4 hybrids for visible light photocatalysis of Orange II, J. Hazard. Mater., 297, 224, 10.1016/j.jhazmat.2015.04.046

Wu, 2014, CuFe2O4 as heterogeneous catalyst in degradation of p-nitrophenol with photoelectron-Fenton-like process, Int. J. Environ. Stud., 71, 534, 10.1080/00207233.2014.909227

Yang, 2009, Photocataytic activity evaluation of tetragonal CuFe2O4 nanoparticles for the H2 evolution under visible light irradiation, J. Alloy. Compd., 476, 715, 10.1016/j.jallcom.2008.09.104

Cheng, 2016, Facile construction of CuFe2O4/g-C3N4 photocatalyst for enhanced visible-light hydrogen evolution, RSC Adv., 6, 18990, 10.1039/C5RA27221A

Zeng, 2016, Plasmonic photocatalyst Au/g-C3N4/NiFe2O4 nanocomposites for enhanced visibe-light-driven photocatalytic hydrogen evolution, RSC Adv., 6, 54964, 10.1039/C6RA08356K

Chanda, 2015, Synthesis and characterization of NiFe2O4 electrocatalyst for the hydrogen evolution reaction in alkaline water electrolysis using different polymer binders, J. Power Sources, 285, 217, 10.1016/j.jpowsour.2015.03.067

Kezzim, 2011, Visible light induced hydrogen on the novel hetero-system CuFe2O4/TiO2, Energy Convers. Manage., 52, 2800, 10.1016/j.enconman.2011.02.014

Hussain, 2016, Fabrication of cuFe2O4/α-Fe2O3 composite thin films on FTO coated glass and 3-D nanospike structures for efficient photoelectrochemical water splitting, Appl. Mater. Interfaces, 8, 35315, 10.1021/acsami.6b12460

Zak, 2011, X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods, Solid State Sci., 13, 251, 10.1016/j.solidstatesciences.2010.11.024

Huerta-Flores, 2016, Enchanced photocatalytic activity for hydrogen evolution of SrZrO3 modified with earth abundant metal oxides, Fuel, 181, 670, 10.1016/j.fuel.2016.05.025

Cho, 2010, Effects of crystal and electronic structures of ANb2O6 (Ca, Sr, Ba) metaniobate compounds on their photocatalytic H2 evolution from pure water, Int. J. Hydrogen Energy, 35, 12954, 10.1016/j.ijhydene.2010.04.057

Li, 2015, Engineering heterogeneous semiconductors for solar water splitting, J.Mater. Chem. A, 3, 2485, 10.1039/C4TA04461D

Lin, 2013, Improved photocatalytic hydrogen generation on ZN2GeO4 nanorods with high crystallinity, Appl. Surf. Sci., 286, 61, 10.1016/j.apsusc.2013.09.014

Spurr, 1957, Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer, Anal. Chem., 29, 760, 10.1021/ac60125a006

Kudo, 2009, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 30, 253, 10.1039/B800489G

Rahman-Khan, 2016, Preparation and characterization of CuFe2O4/TiO2 photocatalyst for the conversion of CO2 into methanol under visible light, Int. J. Chem., 10

Dolia, 2006, X-ray diffraction and optical band gap study nanoparticles of NiFe2O4, Indian J. Pure Appl. Phys., 44, 774

Ortega López, 2015, Synthesis method effect of CoFe2O4 on its photocatalytic properties for H2 production from water and visible light, J. Nanomater., 2015, 1, 10.1155/2015/985872

Liqiang, 2006, Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity, Sol. Energy Mater. Sol. Cells, 90, 1773, 10.1016/j.solmat.2005.11.007

Raja, 2016, Comparative investigation of CuFe2O4 nano and microestructures for structural, morphological, optical and magnetic properties, Physica Ex, 158, 69, 10.1016/j.physe.2016.04.019

Huerta-Flores, 2015, SrZrO3 powders: alternative synthesis, characterization and application as photocatalysts for hydrogen evolution from water splitting, Fuel, 158, 66, 10.1016/j.fuel.2015.05.014

Pugazhenthiran, 2013, High surface area Ag-TiO2 nanotubes for solar/visible-light photocatalytic degradation of ceftiofur sodium, J. Hazard. Mater., 263, 541, 10.1016/j.jhazmat.2013.10.011

Dileep, 2014, Probing optical band gaps at the nanoscale in NiFe2O4 and CoFe2O4 epitaxial films by high resolution electron energy loss spectroscopy, J. Appl. Phys., 116, 103505, 10.1063/1.4895059

Gómez-Solís, 2017, Photocatalytic activity of Mal2O4 (M = Mg, Sr and Ba) for hydrogen production, Fuel, 188, 197, 10.1016/j.fuel.2016.10.038

Ramírez-Ortega, 2017, Energetic states in SnO2-TiO2 structures and their impact on interfacial charge transfer process, J. Mater Sci., 52, 260, 10.1007/s10853-016-0328-3

Zhang, 2007, Structural, photocatalytic and photophysical properties of perovskite MSnO3 (M = Ca, Sr and Ba) photocatalysts, J. Mater. Res., 22, 1859, 10.1557/jmr.2007.0259

Li, 2015, Role of sulfites in the water splitting reaction, J. Solution Chem., 45, 67, 10.1007/s10953-015-0422-1