Comparative study of some new EPR dosimeters
Tài liệu tham khảo
Attix, 1972
Attix, 1986
Baccaro, 2004, In-phantom dose mapping in neutron capture therapy by means of solid state detectors, Nucl. Instrum. Methods: Phys. Res. B, 213, 666, 10.1016/S0168-583X(03)01683-5
Bradshaw, 1962, The use of alanine as a solid dosimeter, Radiat. Res., 17, 11, 10.2307/3571206
Haskell, 1998, A high sensitivity EPR technique for alanine dosimetry, Radiat. Prot. Dosim., 77, 43, 10.1093/oxfordjournals.rpd.a032293
Heydari, 2002, Alanine radicals. 2. The composite polycrystalline alanine EPR spectrum studied by ENDOR, thermal annealing, and spectrum simulations, J. Phys. Chem. A, 106, 8971, 10.1021/jp026023c
Hubbell, J., Seltzer, S., 1995. Tables for mass attenuation coefficients and mass energy-absorption coefficients 1keV to 20MeV for elements Z=1 to 92 and 48 additional substances of dosimetric interest. NIST Report (NIST-IR-5632), U.S. Department of Commerce, Ionizing Radiation Division, Gaithersburg, USA.
ICRU, 1984. Stopping Powers for Electrons and Positrons. Report 37. International Commission on Radiation Units and Measurement, Bethesda, MD.
ICRU, 1989. Tissue Substitutes in Radiation Dosimetry and Measurements. Report 44. International Commission on Radiation Units and Measurements, Bethesda, MD.
Maghraby, 2005, A new EPR dosimeter based on sulfanilic acid, Radiat. Meas., 41, 170, 10.1016/j.radmeas.2005.07.001
Maghraby, 2007, A sensitive EPR dosimetry system based on sulfamic acid, Nucl. Instrum. Methods: Phys. Res. B, 262, 46, 10.1016/j.nimb.2007.05.010
Maghraby, 2012, Taurine for EPR dosimetry, Radiat. Environ. Biophys., 51, 255, 10.1007/s00411-012-0415-z
Maghraby, 2011, EPR/homotaurine: a possible dosimetry system for high doses, Nucl. Instrum. Methods: Phys. Res. A, 659, 504, 10.1016/j.nima.2011.08.017
Maghraby, 2011, Uncertainty attributed to signal averaging in a single averaged alanine EPR spectrum for low-dose applications, Radiat. Prot. Dosim., 143, 6, 10.1093/rpd/ncq292
Maghraby, A., 2012. Ionizing radiation induced radicals. In: Mitsuru Nenoi (Ed.), Current Topics in Ionizing Radiation Research. Tech Publishers, isbn:978-953-51-0196-3.
Malinen, 2003, Alanine radicals, Part 4: relative amounts of radical species in alanine dosimeters after exposure to 6–19MeV electrons and 10kV–15MV photons, Radiat. Res., 159, 149, 10.1667/0033-7587(2003)159[0149:ARPRAO]2.0.CO;2
Malinen, 2003, Alanine radicals, Part 3: properties of the components contributing to the EPR spectrum of X-irradiated alanine dosimeters, Radiat. Res., 159, 23, 10.1667/0033-7587(2003)159[0023:ARPPOT]2.0.CO;2
Mehta, 2000, IAEA high-dose intercomparison in Co-60 field, Appl. Radiat. Isot., 52, 1179, 10.1016/S0969-8043(00)00067-1
Mojgan Z., 2002, Alanine radicals. 2. The composite polycrystalline alanine EPR spectrum studied by ENDOR, thermal annealing, and spectrum simulations, J. Phys. Chem. A, 106, 8971, 10.1021/jp026023c
Nagy, 1996, Complex time dependence of the EPR signal of irradiated l-α-alanine, Appl. Radiat. Isot., 47, 789, 10.1016/0969-8043(96)00053-X
Wagner, 2008, In vivo alanine/electron spin resonance (ESR) dosimetry in radiotherapy of prostate cancer: a feasibility study, Radiother. Oncol., 88, 140, 10.1016/j.radonc.2008.03.017
Waldeland, 2010, The energy dependence of lithium formate and alanine EPR dosimeters for medium energy x rays, Med. Phys., 37, 3569, 10.1118/1.3432567
Zeng, 2004, An experimental and Monte Carlo investigation of the energy dependence of alanine/EPR dosimetry, I: clinical x-ray beams, Phys. Med. Biol., 21, 257, 10.1088/0031-9155/49/2/006