Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các mô phỏng so sánh đối với các nghiệm của bài toán Sturm–Liouville phân thức với các toán tử không kỳ dị
Tóm tắt
Trong nghiên cứu này, chúng tôi xem xét các bài toán Sturm–Liouville (S–L) phân thức trong các toán tử không kỳ dị. Một bài toán S–L phân thức với các hạt nhân mũ và Mittag-Leffler được trình bày với các phiên bản khác nhau trong nghĩa Riemann–Liouville và Caputo. Chúng tôi cũng thu được biểu diễn của các nghiệm cho các bài toán S–L bằng biến đổi Laplace và tìm các nghiệm phân tích của các bài toán. Cuối cùng, chúng tôi so sánh các nghiệm của bài toán với những phiên bản khác nhau, và chúng tôi cũng so sánh các nghiệm của bài toán với các hạt nhân mũ và Mittag-Leffler cùng nhau thông qua mô phỏng dưới các tiềm năng khác nhau, các bậc khác nhau và các trị riêng khác nhau.
Từ khóa
#Sturm–Liouville #toán tử không kỳ dị #hàm Mittag-Leffler #biến đổi Laplace #bài toán phân thứcTài liệu tham khảo
Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 1–13 (2015)
Atangana, A., Baleanu, D.: New fractional derivatives with non-local and nonsingular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)
Atangana, A., Baleanu, D.: Caputo–Fabrizio derivative applied to groundwater flow within confined aquifer. J. Eng. Mech. 143(5), D4016005 (2017)
Gómez-Aguilar, J.F., Morales-Delgado, V.F., Taneco-Hernández, M.A., Baleanu, D., Escobar-Jiménez, R.F., Al Qurashi, M.M.: Analytical solutions of the electrical RLC circuit via Liouville–Caputo operators with local and non-local kernels. Entropy 18(8), 402 (2016)
Alsaedi, A., Baleanu, D., Etemad, S., Rezapour, S.: On coupled systems of time-fractional differential problems by using a new fractional derivative. J. Funct. Spaces 2016, Article ID 4626940 (2016)
Jarad, F., Uğurlu, E., Abdeljawad, T., Baleanu, D.: On a new class of fractional operators. Adv. Differ. Equ. 1, 247 (2017)
Uğurlu, E., Baleanu, D., Taş, K.: On the solutions of a fractional boundary value problem. Turk. J. Math. 42(3), 1307–1311 (2018)
Owolabi, K.M., Atangana, A.: Numerical approximation of nonlinear fractional parabolic differential equations with Caputo–Fabrizio derivative in Riemann–Liouville sense. Chaos Solitons Fractals 99, 171–179 (2017)
Atangana, A., Alqahtani, R.T.: Numerical approximation of the space-time Caputo–Fabrizio fractional derivative and application to groundwater pollution equation. Adv. Differ. Equ. 2016(1), 156 (2016)
Al-Refai, M., Abdeljawad, T.: Analysis of the fractional diffusion equations with fractional derivative of non-singular kernel. Adv. Differ. Equ. 1, 315 (2017)
Abdeljawad, T.: Fractional operators with exponential kernels and a Lyapunov type inequality. Adv. Differ. Equ. 1, 313 (2017)
Carvalho, A.R.: Fractional dynamics of an infection model with time-varying drug exposure. J. Comput. Nonlinear Dyn. 13, 090904 (2018)
Carvalho, A.R., Pinto, C.M., Baleanu, D.: HIV/HCV coinfection model: a fractional-order perspective for the effect of the HIV viral load. Adv. Differ. Equ. 2018(1), 2 (2018)
Pinto, C.M.: Novel results for asymmetrically coupled fractional neurons. Acta Polytech. Hung. 14(1), 177–189 (2017)
Pinto, C.M.: Strange dynamics in a fractional derivative of complex-order network of chaotic oscillators. Int. J. Bifurc. Chaos 25(01), 1550003 (2015)
Baskonus, H.M., Mekkaoui, T., Hammouch, Z., Bulut, H.: Active control of a chaotic fractional order economic system. Entropy 17(8), 5771–5783 (2015)
Baskonus, H.M., Bulut, H.: On the numerical solutions of some fractional ordinary differential equations by fractional Adams–Bashforth–Moulton method. Open Math. 13(1), 547–556 (2015)
Baskonus, H.M., Bulut, H.: Regarding on the prototype solutions for the nonlinear fractional-order biological population model. In: AIP Conference Proceedings, vol. 1738, p. 290004. AIP, New York (2016)
Baskonus, H.M., Hammouch, Z., Mekkaoui, T., Bulut, H.: Chaos in the fractional order logistic delay system: circuit realization and synchronization. In: AIP Conference Proceedings, vol. 1738, p. 290005. AIP, New York (2016)
Ravichandran, C., Jothimani, K., Baskonus, H.M., Valliammal, N.: New results on nondensely characterized integrodifferential equations with fractional order. Eur. Phys. J. Plus 133(3), 109 (2018)
Dokuyucu, M.A., Celik, E., Bulut, H., Baskonus, H.M.: Cancer treatment model with the Caputo–Fabrizio fractional derivative. Eur. Phys. J. Plus 133(3), 92 (2018)
Esen, A., Sulaiman, T.A., Bulut, H., Baskonus, H.M.: Optical solitons to the space-time fractional \((1+ 1)\)-dimensional coupled nonlinear Schrödinger equation. Optik 167, 150–156 (2018)
Bulut, H., Kumar, D., Singh, J., Swroop, R., Baskonus, H.M.: Analytic study for a fractional model of HIV infection of CD4+TCD4+T lymphocyte cells. Math. Nat. Sci. 2(1), 33–43 (2018)
Yavuz, M., Ozdemir, M.N., Baskonus, H.M.: Solution of fractional partial differential equation using the operator involving non-singular kernel. Eur. Phys. J. Plus 133(215), 1–12 (2018)
Abdeljawad, T., Baleanu, D.: On fractional derivatives with exponential kernel and their discrete versions. Rep. Math. Phys. 80(1), 11–27 (2017)
Abdeljawad, T., Baleanu, D.: Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel. J. Nonlinear Sci. Appl. 10, 1098–1107 (2017)
Sun, H., Hao, X., Zhang, Y., Baleanu, D.: Relaxation and diffusion models with non-singular kernels. Phys. A, Stat. Mech. Appl. 468, 590–596 (2017)
Gómez-Aguilar, J.F., Atangana, A.: New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications. Eur. Phys. J. Plus 132(1), 13 (2017)
Gómez-Aguilar, J.F., Atangana, A., Morales-Delgado, V.F.: Electrical circuits RC, LC, and RL described by Atangana–Baleanu fractional derivatives. Int. J. Circuit Theory Appl. 45(11), 1514–1533 (2017)
Abro, K.A., Memon, A.A., Uqaili, M.A.: A comparative mathematical analysis of RL and RC electrical circuits via Atangana–Baleanu and Caputo–Fabrizio fractional derivatives. Eur. Phys. J. Plus 133(3), 113 (2018)
Sheikh, N.A., Ali, F., Saqib, M., Khan, I., Jan, S.A.A.: A comparative study of Atangana-Baleanu and Caputo–Fabrizio fractional derivatives to the convective flow of a generalized Casson fluid. Eur. Phys. J. Plus 132(1), 54 (2017)
Sheikh, N.A., Ali, F., Saqib, M., Khan, I., Jan, S.A.A., Alshomrani, A.S., Alghamdi, M.S.: Comparison and analysis of the Atangana–Baleanu and Caputo–Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction. Results Phys. 7, 789–800 (2017)
Saad, K.M.: Comparing the Caputo, Caputo–Fabrizio and Atangana–Baleanu derivative with fractional order: fractional cubic isothermal auto-catalytic chemical system. Eur. Phys. J. Plus 133(3), 94 (2018)
Gómez-Aguilar, J.F., Yépez-Martínez, H., Calderón-Ramón, C., Cruz-Orduña, I., Escobar-Jiménez, R.F., Olivares-Peregrino, V.H.: Modeling of a mass-spring-damper system by fractional derivatives with and without a singular kernel. Entropy 17(9), 6289–6303 (2015)
Klimek, M., Agrawal, O.P.: On a regular fractional Sturm–Liouville problem with derivatives of order in \((0, 1)\). In: Carpathian Control Conference (ICCC), 2012 13th International pp. 284–289. IEEE Comput. Soc., Los Alamitos (2012)
Bas, E., Metin, F.: Fractional singular Sturm–Liouville operator for Coulomb potential. Adv. Differ. Equ. 1, 300 (2013)
Bas, E.: The inverse nodal problem for the fractional diffusion equation. Acta Sci., Technol. 37(2), 251 (2015)
Zayernouri, M., Karniadakis, G.E.: Fractional Sturm–Liouville eigen-problems: theory and numerical approximation. J. Comput. Phys. 252, 495–517 (2013)
Khosravian-Arab, H., Dehghan, M., Eslahchi, M.R.: Fractional Sturm–Liouville boundary value problems in unbounded domains: theory and applications. J. Comput. Phys. 299, 526–560 (2015)
Dehghan, M., Mingarelli, A.B.: Fractional Sturm–Liouville eigenvalue problems, II (2017). arXiv:1712.09894. arXiv preprint
Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. vol. 198. Elsevier, Amsterdam (1998)