Phân tích protein định lượng so sánh: SclR có vai trò quan trọng trong chuyển hóa carbohydrate ở Aspergillus oryzae

Springer Science and Business Media LLC - Tập 102 - Trang 319-332 - 2017
Feng-Jie Jin1, Pei Han2, Miao Zhuang1, Zhi-Min Zhang1, Long Jin1, Yasuji Koyama3
1Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
2Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing, China
3Noda Institute for Scientific Research, Noda City, Japan

Tóm tắt

Gia đình các yếu tố phiên mã helix-loop-helix (HLH) là một yếu tố chính trong nhiều quá trình phát triển ở các sinh vật từ động vật có vú đến vi sinh vật. Chúng tôi đã xác định yếu tố phiên mã bHLH SclR ở Aspergillus oryzae và phát hiện rằng sự mất chức năng của SclR dẫn đến những thay đổi hình thái đáng kể, chẳng hạn như sự phân hủy protein nhanh chóng và sự phân hủy tế bào trong môi trường lỏng dextrin-polypeptone-extract men. Kết quả cho thấy SclR có thể đóng vai trò quan trọng trong cả sản xuất lên men truyền thống và sản xuất enzyme thương mại ở A. oryzae do ảnh hưởng của nó đến sự tăng trưởng. Do đó, nghiên cứu này trình bày một đánh giá so sánh ở mức độ proteome về sự khác biệt bên trong tế bào giữa một chủng bị thiếu gen sclR và một chủng đối chứng bằng cách sử dụng phương pháp gán nhãn TMT (isobaric tandem mass tag) để định lượng. Tổng cộng có 5447 protein đã được xác định, và 568 trong số đó là protein biểu hiện khác biệt (DEPs). Trong số các DEP, 251 protein tăng lên 1.5 lần, và 317 protein giảm 1.5 lần trong chủng bị thiếu sclR so với chủng đối chứng. Sự so sánh các kết quả TMT định lượng cho thấy SclR chủ yếu tham gia vào chuyển hóa carbon, đặc biệt là chuyển hóa carbohydrate. Ngoài ra, một hồ sơ enzym bằng phương pháp bán định lượng (API-ZYM) cho thấy ba enzyme (β-galactosidase, α-glucosidase và α-mannosidase) hoạt động kém hơn đáng kể trong chủng ∆sclR so với chủng đối chứng. Hơn nữa, RT-PCR định lượng cho thấy rằng sự biểu hiện của một số gen đã thay đổi tương tự như các protein tương ứng của chúng. Những kết quả này gợi ý rằng một chức năng có thể của SclR trong quá trình tăng trưởng của A. oryzae là sự tham gia quan trọng của nó trong chuyển hóa carbohydrate.

Từ khóa

#SclR #Aspergillus oryzae #chuyển hóa carbohydrate #protein định lượng #DEPs

Tài liệu tham khảo

Adav SS, Li AA, Manavalan A, Punt P, Sze SK (2010) Quantitative iTRAQ secretome analysis of Aspergillus niger reveals novel hydrolytic enzymes. J Proteome Res 9:3932–3940 Adav SS, Ravindran A, Sze SK (2015) Quantitative proteomic study of Aspergillus fumigatus secretome revealed deamidation of secretory enzymes. J Proteome 119:154–168 Atchley WR, Fitch WM (1997) A natural classification of the basic helix-loop-helix class of transcription factors. Proc Natl Acad Sci U S A 94:5172–5176 Atchley WR, Terhalle W, Dress A (1999) Positional dependence, cliques, and predictive motifs in the bHLH protein domain. J Mol Evol 48:501–516 Beutler E (2007) PGK deficiency. Br J Haematol 136:3–11 Budzyńska A, Sadowska B, Więckowska-Szakiel M, Różalska B (2014) Enzymatic profile, adhesive and invasive properties of Candida albicans under the influence of selected plant essential oils. Acta Biochim Pol 61:115–121 Caruso ML, Litzka O, Martic G, Lottspeich F, Brakhage AA (2002) Novel basic-region helix-loop-helix transcription factor (AnBH1) of Aspergillus nidulans counteracts the CCAAT-binding complex AnCF in the promoter of a penicillin biosynthesis gene. J Mol Biol 323:425–439 Castilhos G, Lazzarotto F, Spagnolo-Fonini L, Bodanese-Zanettini MH, Margis-Pinheiro M (2014) Possible roles of basic helix-loop-helix transcription factors in adaptation to drought. Plant Sci 223:1–7 Chaves DF, Carvalho PC, Lima DB, Nicastro H, Lorenzeti FM, Siqueira-Filho M, Hirabara SM, Alves PH, Moresco JJ, Yates JR 3rd, Lancha AH Jr (2013) Comparative proteomic analysis of the aging soleus and extensor digitorum longus rat muscles using TMT labeling and mass spectrometry. J Proteome Res 12:4532–4546 Dutton JR, Johns S, Miller BL (1997) StuAp is a sequence-specific transcription factor that regulates developmental complexity in Aspergillus nidulans. EMBO J 16:5710–5721 Fischer A, Leimeister C, Winkler C, Schumacher N, Klamt B, Elmasri H, Steidl C, Maier M, Knobeloch KP, Amann K, Helisch A, Sendtner M, Gessler M (2002) Hey bHLH factors in cardiovascular development. Cold Spring Harb Symp Quant Biol 67:63–70 Imayoshi I, Ishidate F, Kageyama R (2015) Real-time imaging of bHLH transcription factors reveals their dynamic control in the multipotency and fate choice of neural stem cells. Front Cell Neurosci 9:288 Janecek S (1997) Alpha-amylase family: molecular biology and evolution. Prog Biophys Mol Biol 67:67–97 Jin FJ, Takahashi T, Machida M, Koyama Y (2009) Identification of bHLH-type transcription regulator gene by systematically deleting large chromosomal segments in Aspergillus oryzae. Appl Environ Microbiol 75:5943–5951 Jin FJ, Takahashi T, Matsushima K, Hara S, Maruyama J, Kitamoto K, Koyama Y (2011a) SclR, a basic helix-loop-helix transcription factor, regulates hyphal morphology and promotes sclerotial formation in Aspergillus oryzae. Eukaryot Cell 10:945–955 Jin FJ, Nishida M, Hara S, Koyama Y (2011b) Identification and characterization of a putative basic helix-loop-helix transcription factor involved in the early stage of conidiophore development in Aspergillus oryzae. Fungal Genet Biol 48:1108–1115 Jin FJ, Katayama T, Maruyama JI, Kitamoto K (2016) Comparative genomic analysis identified a mutation related to enhanced heterologous protein production in the filamentous fungus Aspergillus oryzae. Appl Microbiol Biotechnol 100:9163–9174 Kawai S, Mukai T, Mori S, Mikami B, Murata K (2005) Hypothesis: structures, evolution, and ancestor of glucose kinases in the hexokinase family. J Biosci Bioeng 99:320–330 Kitamoto N, Go M, Shibayama T, Kimura T, Kito Y, Ohmiya K, Tsukagoshi N (1996) Molecular cloning, purification and characterization of two endo-1,4-beta-glucanases from Aspergillus oryzae KBN616. Appl Microbiol Biotechnol 46:538–544 Kobayashi T, Abe K, Asai K, Gomi K, Juvvadi PR, Kato M, Kitamoto M, Takeuchi M, Machida M (2007) Genomics of Aspergillus oryzae. Biosci Biotechnol Biochem 71:646–670 Ledent V, Vervoort M (2001) The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis. Genome Res 11:754–770 Leone R, Buonomo S, Nakamura K, Aoki S, Vidotto V (1998) Enzymatic profile of Cryptococcus neoformans strains by using the API-ZYM system. Rev Iberoam Micol 15:136–140 Li X, Duan X, Jiang H, Sun Y, Tang Y, Yuan Z, Guo J, Liang W, Chen L, Yin J, Ma H, Wang J, Zhang D (2006) Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol 141:1167–1184 Li Y, Wei Y, Guo J, Cheng Y, He W (2015) Interactional role of microRNAs and bHLH-PAS proteins in cancer (review). Int J Oncol 47:25–34 Liu JY, Men JL, Chang MC, Feng CP, Yuan LG (2017) iTRAQ-based quantitative proteome revealed metabolic changes of Flammulina velutipes mycelia in response to cold stress. J Proteome 156:75–84 Machida M, Asai K, SanoM TK, Kumagai T, Terai G, Kusumoto K, Arima T, Akita O, Kashiwagi Y, Abe K, Gomi K, Horiuchi H, Kitamoto K, Kobayashi T, Takeuchi M, Denning DW, Galagan JE, Nierman WC, Yu J, Archer DB, Bennett JW, Bhatnagar D, Cleveland TE, Fedorova ND, Gotoh O, Horikawa H, Hosoyama A, Ichinomiya M, Igarashi R, Iwashita K, Juvvadi PR, Kato M, Kato Y, Kin T, Kokubun A, Maeda H, Maeyama N, Maruyama J, Nagasaki H, Nakajima T, Oda K, Okada K, Paulsen I, Sakamoto K, Sawano T, Takahashi M, Takase K, Terabayashi Y, Wortman JR, Yamada O, Yamagata Y, Anazawa H, Hata Y, Koide Y, Komori T, Koyama Y, Minetoki T, Suharnan S, Tanaka A, Isono K, Kuhara S, Ogasawara N, Kikuchi H (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157–1161 Majumdar S, Ghatak J, Mukherji S, Bhattacharjee H, Bhaduri A (2004) UDPgalactose 4-epimerase from Saccharomyces cerevisiae. A bifunctional enzyme with aldose 1-epimerase activity. Eur J Biochem 271:753–759 Mazurek S (2011) Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol 43:969–980 Murre C, McCaw PS, Baltimore D (1989) A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56:777–783 Murre C, Bain G, van Dijk MA, Engel I, Furnari BA, Massari ME, Matthews JR, Quong MW, Rivera RR, Stuiver MH (1994) Structure and function of helix-loop-helix proteins. Biochim Biophys Acta 1218:129–135 Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L (2000) The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell 12:1863–1878 Nitsche BM, Burggraaf-van Welzen AM, Lamers G, Meyer V, Ram AF (2013) Autophagy promotes survival in aging submerged cultures of the filamentous fungus Aspergillus niger. Appl Microbiol Biotechnol 97:8205–8218 Patterson MC (2005) Metabolic mimics: the disorders of N-linked glycosylation. Sem Pediatr Neurol 12:144–151 Pruss B, Meyer HE, Holldorf AW (1993) Characterization of the glyceraldehyde 3-phosphate dehydrogenase from the extremely halophilic archaebacterium Haloarcula vallismortis. Arch Microbiol 160:5–11 Roach PJ, Depaoli-Roach AA, Hurley TD, Tagliabracci VS (2012) Glycogen and its metabolism: some new developments and old themes. Biochem J 441:763–787 Rodrigues JR, Couto A, Cabezas A, Pinto RM, Ribeiro JM, Canales J, Costas MJ, Cameselle JC (2014) Bifunctional homodimeric triokinase/FMN cyclase: contribution of protein domains to the activities of the human enzyme and molecular dynamics simulation of domain movements. J Biol Chem 289:10620–10636 Schurig H, Beaucamp N, Ostendorp R, Jaenicke R, Adler E, Knowles JR (1995) Phoglycerate kinase and triosephosphate isomerase from the hyperthermophilic bacterium Thermotoga maritima form a covalent bifunctional enzyme complex. EMBO J 14:442–451 Sirover MA (2011) On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: biochemical mechanisms and regulatory control. Biochim Biophys Acta 1810:741–751 Sloothaak J, Odoni DI, de Graaff LH, Martins Dos Santos VA, Schaap PJ, Tamayo-Ramos JA (2015) Aspergillus niger membrane-associated proteome analysis for the identification of glucose transporters. Biotechnol Biofuels 8:150 Suzuki K, Tanaka M, Konno Y, Ichikawa T, Ichinose S, Hasegawa-Shiro S, Shintani T, Gomi K (2014) Distinct mechanism of activation of two transcription factors, AmyR and MalR, involved in amylolytic enzyme production in Aspergillus oryzae. Appl Microbiol Biotechnol 99:1805–1815 Toledo-Ortiz G, Huq E, Quail PH (2003) The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15:1749–1770 Tüncher A, Reinke H, Martic G, Caruso ML, Brakhage AA (2004) A basic-region helix-loop-helix protein-encoding gene (devR) involved in the development of Aspergillus nidulans. Mol Microbiol 52:227–241 Valiante V, Baldin C, Hortschansky P, Jain R, Thywißen A, Straßburger M, Shelest E, Heinekamp T, Brakhage AA (2016) The Aspergillus fumigatus conidial melanin production is regulated by the bifunctional bHLH DevR and MADS-box RlmA transcription factors. Mol Microbiol 102:321–335 Vizcaíno JA, Csordas A, del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternent T, Xu QW, Wang R, Hermjakob H (2016) 2016 update of the PRIDE database and related tools. Nucleic Acids Res 44(D1):D447–D456 Wada R, Jin FJ, Koyama Y, Maruyama J, Kitamoto K (2014) Efficient formation of heterokaryotic sclerotia in the filamentous fungus Aspergillus oryzae. Appl Microbiol Biotechnol 98:325–334 Wang C, Lv Y, Wang B, Yin C, Lin Y, Pan L (2015) Survey of protein-DNA interactions in Aspergillus oryzae on a genomic scale. Nucleic Acids Res 43:4429–4446 Xie Y, Wang G (2015) Mechanisms of fatty acid synthesis in marine fungus-like protists. Appl Microbiol Biotechnol 99:8363–8375 Yang LT, Qi YP, YB L, Guo P, Sang W, Feng H, Zhang HX, Chen LS (2013) iTRAQ protein profile analysis of Citrus sinensis roots in response to long-term boron-deficiency. J Proteome 93:179–206 Zhang F, Zhong H, Han X, Guo Z, Yang W, Liu Y, Yang K, Zhuang Z, Wang S (2015) Proteomic profile of Aspergillus flavus in response to water activity. Fungal Biol 119:114–124 Zhao G, Hou L, Yao Y, Wang C, Cao X (2012) Comparative proteome analysis of Aspergillus oryzae 3.042 and A. oryzae 100-8 strains: towards the production of different soy sauce flavors. J Proteome 75:3914–3924 Żukiewicz-Sobczak WA, Cholewa G, Sobczak P, Silny W, Nadulski R, Wojtyła-Buciora P, Zagórski J (2016) Enzymatic activity of fungi isolated from crops. Postepy Dermatol Alergol 33:457–463