Comparative performance study of multiple-input bulk-driven and multiple-input bulk-driven quasi-floating-gate DDCCs
Tài liệu tham khảo
Lopez-Martin, 2008, Compact class AB CMOS current mirror, Electron Lett, 44, 1335, 10.1049/el:20082419
Lopez-Martin, 2010, Micropower high current-drive class AB CMOS current-feedback operational amplifier, Int J Circuit Theory Appl, 39, 893, 10.1002/cta.674
Lopez-Martin, 2012, Power-efficient analog design based on the class AB super source follower, Int J Circuit Theory Appl, 40, 1143, 10.1002/cta.776
Monsurrò, 2011, Exploiting the body of MOS devices for high performance analog design, IEEE Circuits Syst Mag, 11, 8, 10.1109/MCAS.2011.942751
Raikos, 2010, 0.8V bulk-driven operational amplifier, Analog Integr Circ Sig Process, 63, 425, 10.1007/s10470-009-9425-4
Raikos, 2012, 0.5 V bulk-driven analog building blocks, AEÜ, Int J Electron Commun J, 66, 920, 10.1016/j.aeue.2012.03.015
Khateb, 2018, Design and Implementation of a 0.3-V differential difference amplifier, IEEE Trans Circ Syst I-Regular Papers
Khateb, 2019, 0.3-V bulk-driven nanopower OTA-C integrator in 0.18 µm CMOS, Circ Syst Signal Proces, 38, 1333, 10.1007/s00034-018-0901-x
Kulej, 2018, Design and implementation of sub 0.5-V OTAs in 0.18 µm CMOS, Int J Circuit Theory Appl, 46, 1129, 10.1002/cta.2465
Chatterjee, 2005, 0.5-V analog circuit techniques and their application in OTA and filter design, IEEE J Solid-State Circuits, 40, 2373, 10.1109/JSSC.2005.856280
Khateb, 2014, Bulk-driven floating-gate and bulk-driven quasi-floating-gate techniques for low-voltage low-power analog circuits design, AEU Electron Commun J, 68, 64, 10.1016/j.aeue.2013.08.019
Khateb, 2015, The experimental results of the bulk-driven quasi-floating-gate MOS transistor, AEU Electron Commun J, 69, 462, 10.1016/j.aeue.2014.10.016
Khateb, 2013, Comparative study of sub-volt differential difference current conveyors, Microelectron J, 44, 1278, 10.1016/j.mejo.2013.08.015
Raj, 2014, Low-voltage bulk-driven self-biased cascode current mirror with bandwidth enhancement, Electron Lett, 50, 23, 10.1049/el.2013.3600
Xiao, 2015, Transconductance improvement technique for bulk-driven OTA in nanometre CMOS process, Electron Lett, 51, 1758, 10.1049/el.2015.1559
Raj, 2016, Low voltage high output impedance bulk-driven quasi-floating gate self-biased high-swing cascode current mirror, Circ Syst Signal Proces, 35, 2683, 10.1007/s00034-015-0184-4
Raj, 2016, Low voltage high performance bulk driven quasi-floating gate based self-biased cascode current mirror, Microelectron J, 52, 124, 10.1016/j.mejo.2016.04.001
Thawatchai T. Low-voltage CFOA with bulk-driven, quasi-floating-gate and bulk-driven-quasi-floating-gate MOS transistors. TENCON 2015–2015 IEEE region 10 conference; 2015. p. 1–4.
Khateb, 2013, A survey of non-conventional techniques for low-voltage, low-power analog circuits design, Radioengineering, 22, 415
Khateb, 2019, Multiple-input bulk-driven MOS transistor for low-voltage low-frequency applications, Circ Syst Signal Proces, 38, 2829, 10.1007/s00034-018-0999-x
Khateb, 2019, Multiple-input Bulk-driven Quasi-floating-gate MOS transistor for low-voltage low-power integrated circuits, AEU – Int J Electron Commun, 100, 32, 10.1016/j.aeue.2018.12.023
Chiu, 1996, CMOS differential difference current conveyors and their applications, IEE Proc Circ, Dev Syst, 91, 10.1049/ip-cds:19960223
Chang, 2006, High-order DDCC-based general mixed-mode universal filter, IEE Proc – Circ, Dev Syst, 153, 511, 10.1049/ip-cds:20050345
Chiu, 2007, High-input and low-output impedance voltage-mode universal biquadratic filter using DDCCs, IEEE Trans Circ Syst II: Express Briefs, 54, 649, 10.1109/TCSII.2007.899460