Comparative investigation on decorating carbon nanotubes with different transition metals

Applied Physics A Solids and Surfaces - Tập 102 - Trang 333-337 - 2010
J. Y. Guo1,2, C. X. Xu1
1State Key Laboratory of Bioelectronics, Advanced Photonics Center, Southeast University, Nanjing, P.R. China
2College of Mathematics and Physics, Jiangsu University of Science and Technology, Zhenjiang, P.R. China

Tóm tắt

The diffusion dynamics and structure evolvement of the transition metal (TM=Ni, Cu, Au, and Pt) atoms decorating carbon nanotubes (CNTs) with differences have been systematically studied by Monte Carlo (MC) simulation. The studies show that TM atoms can be encapsulated inside, aggregated and even wrapped on the surface of the CNT, which depend on the interactions among TM–TM and TM–C during the spontaneous diffusion process. The decorating effect is greatly influenced by the diameters of CNTs, TM atoms tend to be encapsulated inside the tube in the relatively large CNTs, while they are inclined to stack on the surface for the small ones. More interestingly, Au and Pt atoms would wrap around the smaller CNT, whereas Ni and Cu atoms are still clustering outside of the CNTs with the increase of the number of TM atoms. Simulation results indicate that Pt and Au possess a better wetting effect with CNT than Ni and Cu.

Tài liệu tham khảo

G. Vasilios, G. Dimitrios, T. Vasilios, P. Lucia, M.G. Dirk, P. Maurizio, J. Mater. Chem. 17, 2679 (2007) X.G. Hu, S.J. Dong, J. Mater. Chem. 18, 1279 (2008) J.P. Tessonnier, O. Ersen, G. Weinberg, P.H. Cuong, D.S. Su, R. Schlogl, Acs Nano 3, 2081 (2009) A. Naeemi, J.D. Meindl, Annu. Rev. Mater. Res. 39, 255 (2009) O. Hjortstam, P. Isberg, S.S. Öderholm, H. Dai, Appl. Phys. A 78, 1175 (2004) Y.F. Li, R. Hatakeyama, T. Kaneko, Appl. Phys. A 88, 745 (2007) A.K. Singh, M.A. Ribas, B.I. Yakobson, Acs Nano 3, 1657 (2009) A.K. Nitin, M. Joachim, Adv. Mater. 21, 2664 (2009) B. Yoon, H.B. Pan, C.M. Wai, J. Phys. Chem. C 113, 1520 (2009) S.J. Guo, J. Li, W. Ren, D. Wen, S.J. Dong, E.K. Wang, Chem. Mater. 21, 2247 (2009) R.R. Johnson, B.J. Rego, A.T.C. Johnson, M.L. Klein, J. Phys. Chem. B 113, 11589 (2009) P. Chen, X. Wu, J. Lin, K.L. Tan, J. Phys. Chem. B 103, 4559 (1999) S. Fullam, D. Cottell, H. Rensmo, D. Fitzmaurice, Adv. Mater. 12, 1430 (2000) H.S. Kim, H. Lee, K.S. Han, J.H. Kim, M.S. Song, M.S. Park, J.Y. Lee, J.K. Kang, J. Phys. Chem. B 109, 8983 (2005) Y. Lin, K.A. Watson, M.J. Fallbach, S. Ghose, J.G. Smith, D.M. Delozier, W. Cao, R.E. Crooks, J.W. Connell, Acs Nano 3, 871 (2009) Y.F. Guo, Y. Kong, W.L. Guo, H.J. Gao, J. Comput. Theor. Nanosci. 1, 93 (2004) S. Arcidiacono, J.H. Walther, D. Poulikakos, D. Passerone, P. Koumoutsakos, Phys. Rev. Lett. 94, 105502 (2005) L. Wang, H.W. Zhang, Z.Q. Zhang, Y.G. Zheng, J.B. Wang, Appl. Phys. Lett. 91, 051122 (2007) L. Wang, H.W. Zhang, Y.G. Zheng, J.B. Wang, Z.Q. Zhang, J. Appl. Phys. 103, 083519 (2008) D.H. Seo, H.Y. Kim, J.H. Ryu, H.M. Lee, J. Phys. Chem. C 113, 10416 (2009) H.Y. Li, X.B. Ren, X.Y. Guo, Chem. Phys. Lett. 437, 108 (2007) P.O. Krasnov, F. Ding, A.K. Singh, B.I. Yakobson, J. Phys. Chem. C 111, 17977 (2007) H.L. Zhuang, G.P. Zheng, A.K. Soh, Comput. Mater. Sci. 43, 823 (2008) A.P. Sutton, J. Chen, Philos. Mag. Lett. 61, 139 (1990) S.P. Huang, D.S. Mainardi, P.B. Balbuena, Surf. Sci. 545, 163 (2003) J.H. Li, X.D. Dai, S.H. Liang, K.P. Tai, Y. Kong, B.X. Liu, Phys. Rep. 455, 1 (2008) P.K.D. Jonathan, J.W. David, New J. Chem. 22, 733 (1998) Z.Y. Zhang, X.L. Liang, S. Wang, K. Yao, Y.F. Hu, Y.Z. Zhu, Q. Chen, W.W. Zhou, Y. Li, Y.G. Yao, J. Zhang, L.M. Peng, Nano Lett. 7, 3603 (2007) Z.Y. Zhang, S. Wang, L. Ding, X.L. Liang, H.L. Xu, J. Shen, Q. Chen, R.L. Cui, Y. Li, L.-M. Peng, Appl. Phys. Lett. 92, 133117 (2008)