Comparative in Silico Analysis of Fungal and Bacterial Alkaline Serine Proteases: Insights into Structure, Function, and Evolution

Seyed Erfan Mousavi1, Fatemeh Pakniya1, Mandana Behbahani1
1Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Akbar S, Khan S, Ali F, Hayat M, Qasim M, Gul S (2020) iHBP-DeepPSSM: Identifying hormone binding proteins using PsePSSM based evolutionary features and deep learning approach. Chemom Intell Lab Syst 204:104103

Ao C, Gao L, Yu L (2020) Identifying G-protein coupled receptors using mixed-feature extraction methods and machine learning methods. IEEE Access. https://doi.org/10.1109/ACCESS.2020.2983105

Ariaeenejad S, Mousivand M, Moradi Dezfouli P, Hashemi M, Kavousi K, Hosseini Salekdeh G (2018) A computational method for prediction of xylanase enzymes activity in strains of Bacillus subtilis based on pseudo amino acid composition features. PLoS ONE 13(10):e0205796. https://doi.org/10.1371/journal.pone.0205796

Bailey TL, Johnson J, Grant CE, Noble WS (2015) The MEME suite. Nucl Acids Res 43(W1):W39–W49. https://doi.org/10.1093/nar/gkv416

Chetal G, Verma ML (2023) Chapter 4-In silico approaches for the quest of the novel enzymes. In: Kuddus M and Ramteke P (eds), Value-addition in agri-food industry waste through enzyme technology. Academic Press, pp 65–78. https://doi.org/10.1016/B978-0-323-89928-4.00017-1

Du PF, Zhao W, Miao YY, Wei LY, Wang L (2017) UltraPse: a universal and extensible software platform for representing biological sequences. Int J Mol Sci. https://doi.org/10.3390/ijms18112400

Duvaud S, Gabella C, Lisacek F, Stockinger H, Ioannidis V, Durinx C (2021) Expasy, the swiss bioinformatics resource portal, as designed by its users. Nucl Acids Res 49(W1):W216–W227. https://doi.org/10.1093/nar/gkab225

Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28(23):3150–3152. https://doi.org/10.1093/bioinformatics/bts565

Gurung AB (2020) In silico structure modelling of SARS-CoV-2 Nsp13 helicase and Nsp14 and repurposing of FDA approved antiviral drugs as dual inhibitors. Gene Rep 21:100860

Harwood CR, Kikuchi Y (2022) The ins and outs of Bacillus proteases: activities, functions and commercial significance. FEMS Microbiol Rev 46(1):fuab046. https://doi.org/10.1093/femsre/fuab046

Hoo ZH, Candlish J and Teare D (2017) What is an ROC curve? BMJ Publishing Group Ltd and the British Association for Accident, vol 34, pp 357–359

Larder CE, Iskandar MM, Sabally K, Kubow S (2022) Complementary and efficient methods for di-and tri-peptide analysis and amino acid quantification from simulated gastrointestinal digestion of collagen hydrolysate. LWT 155:112880

Linz B, Sharafutdinov I, Tegtmeyer N, Backert S (2023) Evolution and role of proteases in campylobacter Jejuni lifestyle and pathogenesis. Biomolecules 13(2):323

Liu B, Gao X, Zhang H (2019) BioSeq-Analysis2.0: an updated platform for analyzing DNA, RNA and protein sequences at sequence level and residue level based on machine learning approaches. Nucl Acids Res 47(20):e127–e127. https://doi.org/10.1093/nar/gkz740

Long H, Liao B, Xu X, Yang J (2018) A hybrid deep learning model for predicting protein hydroxylation sites. Int J Mol Sci. https://doi.org/10.3390/ijms19092817

Luo J, Wu M, Gopukumar D, Zhao Y (2016) Big data application in biomedical research and health care: a literature review. Biomed Inform Insights 8:1–10. https://doi.org/10.4137/bii.S31559

Matkawala F, Nighojkar S, Kumar A, Nighojkar A (2021) Microbial alkaline serine proteases: production, properties and applications. World J Microbiol Biotechnol 37(4):63. https://doi.org/10.1007/s11274-021-03036-z

Mei J, Zhao J (2018a) Analysis and prediction of presynaptic and postsynaptic neurotoxins by Chou’s general pseudo amino acid composition and motif features. J Theor Biol 447:147–153. https://doi.org/10.1016/j.jtbi.2018.03.034

Mei J, Zhao J (2018b) Prediction of HIV-1 and HIV-2 proteins by using Chou’s pseudo amino acid compositions and different classifiers. Sci Rep. https://doi.org/10.1038/s41598-018-20819-x

Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, Finn RD, Bateman A (2021) Pfam: the protein families database in 2021. Nucl Acids Res 49(D1):D412–D419. https://doi.org/10.1093/nar/gkaa913

Mousavizadegan M, Mohabatkar H (2018) Computational prediction of antifungal peptides via Chou’s PseAAC and SVM. J Bioinform Comput Biol 16(04):1850016

Muszewska A, Stepniewska-Dziubinska MM, Steczkiewicz K, Pawlowska J, Dziedzic A, Ginalski K (2017) Fungal lifestyle reflected in serine protease repertoire. Sci Rep 7(1):9147. https://doi.org/10.1038/s41598-017-09644-w

Nahm FS (2022) Receiver operating characteristic curve: overview and practical use for clinicians. Korean J Anesthesiol 75(1):25–36

Oda K, Dunn BM, Wlodawer A (2022) Serine-carboxyl peptidases, sedolisins: from discovery to evolution. Biochemistry 61(16):1643–1664. https://doi.org/10.1021/acs.biochem.2c00239

Patel AK, Dong C-D, Chen C-W, Pandey A and Singhania RR (2023). Chapter 3 - Production, purification, and application of microbial enzymes. In Brahmachari G (ed), Biotechnology of Microbial Enzymes (Second Edition). Academic Press, pp 25–57. https://doi.org/10.1016/B978-0-443-19059-9.00019-0

Paysan-Lafosse T, Blum M, Chuguransky S, Grego T, Pinto BL, Salazar GA, Bileschi ML, Bork P, Bridge A, Colwell L, Gough J, Haft DH, Letunić I, Marchler-Bauer A, Mi H, Natale DA, Orengo CA, Pandurangan AP, Rivoire C, Bateman A (2023) InterPro in 2022. Nucl Acids Res 51(D1):D418–D427. https://doi.org/10.1093/nar/gkac993

Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD (2018) HMMER web server: 2018 update. Nucl Acids Res 46(W1):W200–W204

Qiu J, Wilkens C, Barrett K, Meyer AS (2020) Microbial enzymes catalyzing keratin degradation: classification, structure, function. Biotechnol Adv 44:107607. https://doi.org/10.1016/j.biotechadv.2020.107607

Rawlings ND, Barrett AJ, Finn R (2016) Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucl Acids Res 44(D1):D343–D350

Mohamed ME, and Thompson JD (2016) Motif discovery in protein sequences. In: Pattern Recognition - Analysis and Applications. IntechOpen. https://doi.org/10.5772/65441

Satala D, Bras G, Kozik A, Rapala-Kozik M, Karkowska-Kuleta J (2023) More than just protein degradation: the regulatory roles and moonlighting functions of extracellular proteases produced by fungi pathogenic for humans. J Fungi 9(1):121

Sharma N, Thakur N, Raj T, Savitri, Bhalla TC (2017) Mining of Microbial Genomes for the Novel Sources of Nitrilases. Biomed Res Int. https://doi.org/10.1155/2017/7039245

Solanki P, Putatunda C, Kumar A, Bhatia R, Walia A (2021) Microbial proteases: ubiquitous enzymes with innumerable uses. 3 Biotech 11(10):428. https://doi.org/10.1007/s13205-021-02928-z

Upadhyay SK, Gautam P, Pandit H, Singh Y, Basir SF, Madan T (2012) Identification of fibrinogen-binding proteins of Aspergillus fumigatus using proteomic approach. Mycopathologia 173:73–82

Wang X, Qin X, Tong L, Zheng J, Dong T, Wang X, Wang Y, Huang H, Yao B, Zhang H (2023) Improving the catalytic activity of a detergent-compatible serine protease by rational design. Microb Biotechnol. https://doi.org/10.1111/1751-7915.14218

Yao J, Wlodawer A, Guo H (2013) Understanding the autocatalytic process of pro-kumamolisin activation from molecular dynamics and quantum mechanical/molecular mechanical (QM/MM) free-energy simulations. Chemistry 19(33):10849–10852. https://doi.org/10.1002/chem.201301310