Comparative genomics reveals low levels of inter- and intraspecies diversity in the causal agents of dwarf and common bunt of wheat and hint at conspecificity of Tilletia caries and T. laevis

IMA Fungus - 2022
Somayyeh Sedaghatjoo1, Bagdevi Mishra2, Manuel Förster3, Yvonne Becker1, Jens Keilwagen4, Berta Killermann3, Marco Thines5, Petr Karlovský6, Wolfgang Maier1
1Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104, Brunswick, Germany
2Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
3Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Vöttinger Straße 38, 85354, Freising, Germany
4Institute for Biosafety in Plant Biotechnology, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
5Faculty of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
6Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, 37077, Goettingen, Germany

Tóm tắt

AbstractTilletia caries and T. laevis, which are the causal agents of common bunt, as well as T. controversa, which causes dwarf bunt of wheat, threaten especially organic wheat farming. The three closely related fungal species differ in their teliospore morphology and partially in their physiology and infection biology. The gene content as well as intraspecies variation in these species and the genetic basis of their separation is unknown. We sequenced the genome of four T. caries, five T. controversa, and two T. laevis and extended this dataset with five publicly available ones. The genomes of the three species displayed microsynteny with up to 94.3% pairwise aligned regions excluding repetitive regions. The majority of functionally characterized genes involved in pathogenicity, life cycle, and infection of corn smut, Ustilago maydis, were found to be absent or poorly conserved in the draft genomes and the biosynthetic pathway for trimethylamine in Tilletia spp. could be different from bacteria. Overall, 75% of the identified protein-coding genes comprising 84% of the total predicted carbohydrate utilizing enzymes, 72.5% putatively secreted proteins, and 47.4% of effector-like proteins were conserved and shared across all 16 isolates. We predicted nine highly identical secondary metabolite biosynthesis gene clusters comprising in total 62 genes in all species and none were species-specific. Less than 0.1% of the protein-coding genes were species-specific and their function remained mostly unknown. Tilletia controversa had the highest intraspecies genetic variation, followed by T. caries and the lowest in T. laevis. Although the genomes of the three species are very similar, employing 241 single copy genes T. controversa was phylogenetically distinct from T. caries and T. laevis, however these two could not be resolved as individual monophyletic groups. This was in line with the genome-wide number of single nucleotide polymorphisms and small insertions and deletions. Despite the conspicuously different teliospore ornamentation of T. caries and T. laevis, a high degree of genomic identity and scarcity of species-specific genes indicate that the two species could be conspecific.

Từ khóa


Tài liệu tham khảo

Ali S, Laurie JD, Linning R, Cervantes-Chavez JA, Gaudet D, Bakkeren G (2014) An immunity-triggering effector from the Barley smut fungus Ustilago hordei resides in an Ustilaginaceae-specific cluster bearing signs of transposable element-assisted evolution. PLoS Pathog 10:e1004223. https://doi.org/10.1371/journal.ppat.1004223

Almagro Armenteros JJ, Tsirigos KD, Sonderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37:420–423. https://doi.org/10.1038/s41587-019-0036-z

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389

Annis SL, Goodwin PH (1997) Recent advances in the molecular genetics of plant cell wall-degrading enzymes produced by plant pathogenic fungi. Eur J Plant Pathol 103:1–14. https://doi.org/10.1023/a:1008656013255

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25:25–29. https://doi.org/10.1038/75556

Aydoğdu M, Kaya Y (2020) Reactions of spring wheat varieties to common bunt (Tilletia laevis) in Turkey. Cereal Research Communications. https://doi.org/10.1007/s42976-020-00040-1

Bao Z, Eddy SR (2002) Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res 12:1269–1276. https://doi.org/10.1101/gr.88502

Basse CW, Stumpferl S, Kahmann R (2000) Characterization of a Ustilago maydis gene specifically induced during the biotrophic phase: evidence for negative as well as positive regulation. Mol Cell Biol 20:329–339. https://doi.org/10.1128/mcb.20.1.329-339.2000

Begerow D, Schäfer AM, Kellner R, Yurkov A, Kemler M, Oberwinkler F, Bauer R (2014) Ustilaginomycotina. In: McLaughlin DJ, Spatafora JW (eds) Systematics and evolution: Part A. Springer Berlin Heidelberg, Heidelberg, pp 295–329

Beier S, Thiel T, Münch T, Scholz U, Mascher M (2017) MISA-web: a web server for microsatellite prediction. Bioinformatics 33:2583–2585. https://doi.org/10.1093/bioinformatics/btx198

Benevenuto J, Teixeira-Silva NS, Kuramae EE, Croll D, Monteiro-Vitorello CB (2018) Comparative genomics of smut pathogens: insights from orphans and positively selected genes into host specialization. Front Microbiol 9:660. https://doi.org/10.3389/fmicb.2018.00660

Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580. https://doi.org/10.1093/nar/27.2.573

Boetzer M, Pirovano W (2014) SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information. BMC Bioinform 15:211. https://doi.org/10.1186/1471-2105-15-211

Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W (2011) Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27:578–579. https://doi.org/10.1093/bioinformatics/btq683

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

Boneca IG, Dussurget O, Cabanes D, Nahori M-A, Sousa S, Lecuit M, Psylinakis E, Bouriotis V, Hugot J-P, Giovannini M, Coyle A, Bertin J, Namane A, Rousselle J-C, Cayet N, Prévost M-C, Balloy V, Chignard M, Philpott DJ, Cossart P, Girardin SE (2007) A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system. Proc Natl Acad Sci 104:997–1002. https://doi.org/10.1073/pnas.0609672104

Brandfass C, Karlovsky P (2008) Upscaled CTAB-based DNA extraction and real-time PCR assays for Fusarium culmorum and F. graminearum DNA in plant material with reduced sampling error. Int J Mol Sci 9:2306–2321. https://doi.org/10.3390/ijms9112306

Brefort T, Tanaka S, Neidig N, Doehlemann G, Vincon V, Kahmann R (2014) Characterization of the largest effector gene cluster of Ustilago maydis. PLoS Pathog 10:e1003866–e1003866. https://doi.org/10.1371/journal.ppat.1003866

Brieger L (1887) Die Quelle des Trimethylamins im Mutterkorn. Z Physiol Chem 11:2

Brůna T, Hoff KJ, Lomsadze A, Stanke M, Borodovsky M (2020) BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. bioRxiv. https://doi.org/10.1101/2020.08.10.245134

Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37:D233–D238. https://doi.org/10.1093/nar/gkn663

Carris LM (2010) smuts. In: Bockus WW et al (eds) Compendium of wheat diseases and pests. American Phytopathological Society, United States, pp 60–65

Carris LM, Castlebury LA, Goates BJ (2006) Nonsystemic bunt fungi - Tilletia indica and T. horrida: A review of history, systematics, and biology. Annu Rev Phytopathol 44:113–133

Carris LM, Castlebury LA, Huang G, Alderman SC, Luo J, Bao X (2007) Tilletia vankyi, a new species of reticulate-spored bunt fungus with non-conjugating basidiospores infecting species of Festuca and Lolium. Mycol Res 111:1386–1398. https://doi.org/10.1016/j.mycres.2007.09.008

Casacuberta E, González J (2013) The impact of transposable elements in environmental adaptation. Mol Ecol 22:1503–1517. https://doi.org/10.1111/mec.12170

Castlebury LA, Carris LM, Vánky K (2005) Phylogenetic analysis of Tilletia and allied genera in order Tilletiales (Ustilaginomycetes; Exobasidiomycetidae) based on large subunit nuclear rDNA sequences. Mycologia 97:888–900. https://doi.org/10.3852/mycologia.97.4.888

Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552. https://doi.org/10.1093/oxfordjournals.molbev.a026334

Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814. https://doi.org/10.1016/j.cell.2006.02.008

Craciun S, Balskus EP (2012) Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc Natl Acad Sci U S A 109:21307–21312. https://doi.org/10.1073/pnas.1215689109

De Vos L, Steenkamp ET, Martin SH, Santana QC, Fourie G, van der Merwe NA, Wingfield MJ, Wingfield BD (2014) Genome-wide macrosynteny among Fusarium species in the Gibberella fujikuroi complex revealed by amplified fragment length polymorphisms. PLoS ONE 9:e114682. https://doi.org/10.1371/journal.pone.0114682

Degnan JH, Rosenberg NA (2006) Discordance of species trees with their most likely gene trees. PLoS Genet 2:e68. https://doi.org/10.1371/journal.pgen.0020068

Delaunois B, Jeandet P, Clement C, Baillieul F, Dorey S, Cordelier S (2014) Uncovering plant-pathogen crosstalk through apoplastic proteomic studies. Front Plant Sci 5:249. https://doi.org/10.3389/fpls.2014.00249

Denchev CM, Denchev TT (2013) Erratomycetaceae, fam. nov., and validation of some names of smut fungi recently described from India. MYCOBIOTA 1:9. https://doi.org/10.12664/mycobiota.2013.01.07

Denchev TT, Denchev CM (2018a) Tilletia tripogonellae (Tilletiaceae), A New Smut Fungus on Tripogonella spicata (Poaceae) from Argentina. Ann Bot Fenn 55(273–277):5

Denchev TT, Van der Zon APM, Denchev CM (2018) Tilletia triraphidis (Tilletiaceae), a new smut fungus on Triraphis purpurea (Poaceae) from Namibia. Phytotaxa 375:182–186. https://doi.org/10.11646/phytotaxa.375.2.5

Denchev TT, Denchev CM (2018b) Two new smut fungi on Ventenata Poaceae: Tilletia elizabethae from Slovakia and T. ventenatae from Turkey BIOONE

Diehl L (1887) Report on the progress of pharmacy. Proc Am Pharm Assoc 35:372

Djamei A, Schipper K, Rabe F, Ghosh A, Vincon V, Kahnt J, Osorio S, Tohge T, Fernie AR, Feussner I, Feussner K, Meinicke P, Stierhof Y-D, Schwarz H, Macek B, Mann M, Kahmann R (2011) Metabolic priming by a secreted fungal effector. Nature 478:395–398. https://doi.org/10.1038/nature10454

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2012) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. https://doi.org/10.1093/bioinformatics/bts635

Dodds PN, Rafiqi M, Gan PHP, Hardham AR, Jones DA, Ellis JG (2009) Effectors of biotrophic fungi and oomycetes: pathogenicity factors and triggers of host resistance. New Phytol 183:993–1000. https://doi.org/10.1111/j.1469-8137.2009.02922.x

Doehlemann G, van der Linde K, Aßmann D, Schwammbach D, Hof A, Mohanty A, Jackson D, Kahmann R (2009) Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. PLoS Pathog 5:e1000290. https://doi.org/10.1371/journal.ppat.1000290

Doehlemann G, Reissmann S, Aßmann D, Fleckenstein M, Kahmann R (2011) Two linked genes encoding a secreted effector and a membrane protein are essential for Ustilago maydis-induced tumour formation. Mol Microbiol 81:751–766. https://doi.org/10.1111/j.1365-2958.2011.07728.x

El Gueddari NE, Rauchhaus U, Moerschbacher BM, Deising HB (2002) Developmentally regulated conversion of surface-exposed chitin to chitosan in cell walls of plant pathogenic fungi. New Phytol 156:103–112. https://doi.org/10.1046/j.1469-8137.2002.00487.x

Elliott TA, Gregory TR (2015) Do larger genomes contain more diverse transposable elements? BMC Evol Biol 15:69. https://doi.org/10.1186/s12862-015-0339-8

Ettel G, Halbsguth W (1963) The effect of trimethylamine, calcium nitrate and light on the germination of bunt spores of Tilletia tritici. Beiträge Zur Biologie Der Pflanzen 39:37

Forster MK, Sedaghatjoo S, Maier W, Killermann B, Niessen L (2022) Discrimination of Tilletia controversa from the T. caries/T. laevis complex by MALDI-TOF MS analysis of teliospores. Appl Microbiol Biotechnol 106:1257–1278. https://doi.org/10.1007/s00253-021-11757-2

Galperin MY, Makarova KS, Wolf YI, Koonin EV (2014) Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 43:D261–D269. https://doi.org/10.1093/nar/gku1223

Garsin DA (2010) Ethanolamine utilization in bacterial pathogens: roles and regulation. Nat Rev Microbiol 8:290–295. https://doi.org/10.1038/nrmicro2334

Gene Ontology C (2015) Gene Ontology Consortium: going forward. Nucleic Acids Res 43:D1049–D1056. https://doi.org/10.1093/nar/gku1179

Ghareeb H, Drechsler F, Löfke C, Teichmann T, Schirawski J (2015) SUPPRESSOR OF APICAL DOMINANCE1 of Sporisorium reilianum modulates inflorescence branching architecture in maize and Arabidopsis. Plant Physiol 169:2789–2804. https://doi.org/10.1104/pp.15.01347

Gibson DM, King BC, Hayes ML, Bergstrom GC (2011) Plant pathogens as a source of diverse enzymes for lignocellulose digestion. Curr Opin Microbiol 14:264–270. https://doi.org/10.1016/j.mib.2011.04.002

Girard V, Dieryckx C, Job C, Job D (2013) Secretomes: the fungal strike force. Proteomics 13:597–608. https://doi.org/10.1002/pmic.201200282

Goates BJ (1996) Common bunt and dwarf bunt. In: Wilcoxson RD, Saari EE (eds) Bunt and smut diseases of wheat; concepts and methods of disease management. CIMMYT, Mexico

Gorinsek B, Gubensek F, Kordis D (2004) Evolutionary genomics of chromoviruses in eukaryotes. Mol Biol Evol 21:781–798. https://doi.org/10.1093/molbev/msh057

Gurjar MS, Aggarwal R, Jogawat A et al (2019) De novo genome sequencing and secretome analysis of Tilletia indica inciting Karnal bunt of wheat provides pathogenesis-related genes. 3. Biotech 9:219. https://doi.org/10.1007/s13205-019-1743-3

Haas B (2010) TransposonPSI: an application of PSI-blast to mine (retro-)transposon ORF homologies. http://transposonpsi.sourceforge.net/. Accessed 20 Sep 2019

Hackl T, Hedrich R, Schultz J, Förster F (2014) proovread : large-scale high-accuracy PacBio correction through iterative short read consensus. Bioinformatics 30:3004–3011. https://doi.org/10.1093/bioinformatics/btu392

Hanna WF, Vickery HB, Pucher GW (1932) The isolation of trimethylamine from spores of Tilletia levis, the stinking smut of wheat. J Biol Chem 97:351–358

Heimel K, Scherer M, Vranes M, Wahl R, Pothiratana C, Schuler D, Vincon V, Finkernagel F, Flor-Parra I, Kämper J (2010) The transcription factor Rbf1 is the master regulator for b-mating type controlled pathogenic development in Ustilago maydis. PLoS Pathog 6:e1001035. https://doi.org/10.1371/journal.ppat.1001035

Hemetsberger C, Herrberger C, Zechmann B, Hillmer M, Doehlemann G (2012) The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLoS Pathog 8:e1002684. https://doi.org/10.1371/journal.ppat.1002684

Hemetsberger C, Mueller AN, Matei A, Herrberger C, Hensel G, Kumlehn J, Mishra B, Sharma R, Thines M, Huckelhoven R, Doehlemann G (2015) The fungal core effector Pep1 is conserved across smuts of dicots and monocots. New Phytol 206:1116–1126. https://doi.org/10.1111/nph.13304

Hoffmann JA (1982) Bunt of wheat. Plant Dis 66:979. https://doi.org/10.1094/pd-66-979

Hoffmann JA, Kendrick E (1969) Genetic control of compatibility in Tilletia controversa. Phytopathology 59:4

Hogenhout SA, Van der Hoorn RA, Terauchi R, Kamoun S (2009) Emerging concepts in effector biology of plant-associated organisms. Mol Plant Microbe Interact 22:115–122. https://doi.org/10.1094/MPMI-22-2-0115

Holton CS (1942) Inheritance of chlamydospore and sorus characters in species and race hybrids of Tilletia caries and T. foetida. Phytopathology 34:586–592

Holton CS (1951) Methods and results of studies on heterothallism and hybridization in Tilletia caries and T. foetida. Phytopathology 41:511–521

Holton CS, Kendrick EL (1957) Fusion between secondary sporidia in culture as a valid index of sex compatibility in Tilletia caries. Phytopathology 47:2

Huang HQ, Nielsen J (1984) Hybridization of the seedling-infecting Ustilago spp. pathogenic on barley and oats, and a study of the genotypes conditioning the morphology of their spore walls. Can J Bot 62(3):603–608. https://doi.org/10.1139/b84-091

Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, Mende DR, Letunic I, Rattei T, Jensen Lars J, von Mering C, Bork P (2018) eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47:D309–D314. https://doi.org/10.1093/nar/gky1085

Jaramillo VDA, Sukno SA, Thon MR (2015) Identification of horizontally transferred genes in the genus Colletotrichum reveals a steady tempo of bacterial to fungal gene transfer. BMC Genomics 16:2. https://doi.org/10.1186/1471-2164-16-2

Jia WM, Zhou YL, Duan XY, Luo Y, Ding SL, Cao XR, Fitt BDL (2013) Assessment of risk of establishment of wheat dwarf bunt (Tilletia controversa) in China. J Integr Agric 12:87–94. https://doi.org/10.1016/S2095-3119(13)60208-7

Kall L, Krogh A, Sonnhammer EL (2007) Advantages of combined transmembrane topology and signal peptide prediction–the Phobius web server. Nucleic Acids Res 35:W429–W432. https://doi.org/10.1093/nar/gkm256

Kamoun S (2006) A catalogue of the effector secretome of plant pathogenic oomycetes. Annu Rev Phytopathol 44:41–60. https://doi.org/10.1146/annurev.phyto.44.070505.143436

Kamoun S (2007) Groovy times: filamentous pathogen effectors revealed. Curr Opin Plant Biol 10:358–365. https://doi.org/10.1016/j.pbi.2007.04.017

Kamper J, Kahmann R, Bolker M, Ma LJ, Brefort T, Saville BJ, Banuett F, Kronstad JW, Gold SE, Muller O, Perlin MH, Wosten HA, de Vries R, Ruiz-Herrera J, Reynaga-Pena CG, Snetselaar K, McCann M, Perez-Martin J, Feldbrugge M, Basse CW, Steinberg G, Ibeas JI, Holloman W, Guzman P, Farman M, Stajich JE, Sentandreu R, Gonzalez-Prieto JM, Kennell JC, Molina L, Schirawski J, Mendoza-Mendoza A, Greilinger D, Munch K, Rossel N, Scherer M, Vranes M, Ladendorf O, Vincon V, Fuchs U, Sandrock B, Meng S, Ho EC, Cahill MJ, Boyce KJ, Klose J, Klosterman SJ, Deelstra HJ, Ortiz-Castellanos L, Li W, Sanchez-Alonso P, Schreier PH, Hauser-Hahn I, Vaupel M, Koopmann E, Friedrich G, Voss H, Schluter T, Margolis J, Platt D, Swimmer C, Gnirke A, Chen F, Vysotskaia V, Mannhaupt G, Guldener U, Munsterkotter M, Haase D, Oesterheld M, Mewes HW, Mauceli EW, DeCaprio D, Wade CM, Butler J, Young S, Jaffe DB, Calvo S, Nusbaum C, Galagan J, Birren BW (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444:97–101. https://doi.org/10.1038/nature05248

Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2013) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:D199–D205. https://doi.org/10.1093/nar/gkt1076

Katoh K, Rozewicki J, Yamada KD (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20(4):1160–1166. https://doi.org/10.1093/bib/bbx108

Keilwagen J, Wenk M, Erickson JL, Schattat MH, Grau J, Hartung F (2016) Using intron position conservation for homology-based gene prediction. Nucleic Acids Res 44:e89. https://doi.org/10.1093/nar/gkw092

Keilwagen J, Hartung F, Paulini M, Twardziok SO, Grau J (2018) Combining RNA-seq data and homology-based gene prediction for plants, animals and fungi. BMC Bioinform 19:189. https://doi.org/10.1186/s12859-018-2203-5

Khrunyk Y, Münch K, Schipper K, Lupas AN, Kahmann R (2010) The use of FLP-mediated recombination for the functional analysis of an effector gene family in the biotrophic smut fungus Ustilago maydis. New Phytol 187:957–968. https://doi.org/10.1111/j.1469-8137.2010.03413.x

Kijpornyongpan T, Mondo SJ, Barry K, Sandor L, Lee J, Lipzen A, Pangilinan J, LaButti K, Hainaut M, Henrissat B, Grigoriev IV, Spatafora JW, Aime MC (2018) Broad genomic sampling reveals a smut pathogenic ancestry of the fungal clade ustilaginomycotina. Mol Biol Evol 35:1840–1854. https://doi.org/10.1093/molbev/msy072

Kim K-T, Jeon J, Choi J, Cheong K, Song H, Choi G, Kang S, Lee Y-H (2016) Kingdom-wide analysis of fungal small secreted proteins (SSPs) reveals their potential role in host association. Front Plant Sci 7:186–186. https://doi.org/10.3389/fpls.2016.00186

Kimura M, Anzai H, Yamaguchi I (2001) Microbial toxins in plant-pathogen interactions: biosynthesis, resistance mechanisms, and significance. J Gen Appl Microbiol 47:149–160. https://doi.org/10.2323/jgam.47.149

Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27:722–736. https://doi.org/10.1101/gr.215087.116

Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580. https://doi.org/10.1006/jmbi.2000.4315

Krombach S, Reissmann S, Kreibich S, Bochen F, Kahmann R (2018) Virulence function of the Ustilago maydis sterol carrier protein 2. New Phytol 220:553–566. https://doi.org/10.1111/nph.15268

Krueger F (2012–2019) Babraham Bioinformatics - Trim Galore! https://www.bioinformatics.babraham.ac.uk/projects/trim_galore. Accessed 20 Jun 2019

Kubicek CP, Starr TL, Glass NL (2014) Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Annu Rev Phytopathol 52(52):427–451. https://doi.org/10.1146/annurev-phyto-102313-045831

Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12. https://doi.org/10.1186/gb-2004-5-2-r12

Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923

Lanver D, Müller AN, Happel P, Schweizer G, Haas FB, Franitza M, Pellegrin C, Reissmann S, Altmüller J, Rensing SA, Kahmann R (2018) The biotrophic development of Ustilago maydis studied by RNA-Seq analysis. Plant Cell 30:300–323. https://doi.org/10.1105/tpc.17.00764

Letunic I, Bork P (2018) 20 years of the SMART protein domain annotation resource. Nucleic Acids Res 46:D493-d496. https://doi.org/10.1093/nar/gkx922

Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6:41. https://doi.org/10.1186/1754-6834-6-41

Levin HL, Moran JV (2011) Dynamic interactions between transposable elements and their hosts. Nat Rev Genet 12:615–627. https://doi.org/10.1038/nrg3030

Li L, Stoeckert CJ Jr, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189. https://doi.org/10.1101/gr.1224503

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

Li YM, Shivas RG, Cai L (2014) Three new species of Tilletia on Eriachne from north-western Australia. Mycoscience 55:361–366. https://doi.org/10.1016/j.myc.2013.12.003

Lomsadze A, Burns PD, Borodovsky M (2014) Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm. Nucleic Acids Res 42:e119–e119. https://doi.org/10.1093/nar/gku557

Lowe TM, Chan PP (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44:W54–W57. https://doi.org/10.1093/nar/gkw413

Lyu X, Shen C, Fu Y, Xie J, Jiang D, Li G, Cheng J (2015) Comparative genomic and transcriptional analyses of the carbohydrate-active enzymes and secretomes of phytopathogenic fungi reveal their significant roles during infection and development. Sci Rep 5:15565. https://doi.org/10.1038/srep15565

Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J, Di Pietro A, Dufresne M, Freitag M, Grabherr M, Henrissat B, Houterman PM, Kang S, Shim W-B, Woloshuk C, Xie X, Xu J-R, Antoniw J, Baker SE, Bluhm BH, Breakspear A, Brown DW, Butchko RAE, Chapman S, Coulson R, Coutinho PM, Danchin EGJ, Diener A, Gale LR, Gardiner DM, Goff S, Hammond-Kosack KE, Hilburn K, Hua-Van A, Jonkers W, Kazan K, Kodira CD, Koehrsen M, Kumar L, Lee Y-H, Li L, Manners JM, Miranda-Saavedra D, Mukherjee M, Park G, Park J, Park S-Y, Proctor RH, Regev A, Ruiz-Roldan MC, Sain D, Sakthikumar S, Sykes S, Schwartz DC, Turgeon BG, Wapinski I, Yoder O, Young S, Zeng Q, Zhou S, Galagan J, Cuomo CA, Kistler HC, Rep M (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373. https://doi.org/10.1038/nature08850

Ma L-S, Wang L, Trippel C, Mendoza-Mendoza A, Ullmann S, Moretti M, Carsten A, Kahnt J, Reissmann S, Zechmann B, Bange G, Kahmann R (2018) The Ustilago maydis repetitive effector Rsp3 blocks the antifungal activity of mannose-binding maize proteins. Nat Commun 9:1711. https://doi.org/10.1038/s41467-018-04149-0

Macheleidt J, Mattern DJ, Fischer J, Netzker T, Weber J, Schroeckh V, Valiante V, Brakhage AA (2016) Regulation and role of fungal secondary metabolites. Annu Rev Genet 50:371–392. https://doi.org/10.1146/annurev-genet-120215-035203

Martínez-del Campo A, Bodea S, Hamer HA, Marks JA, Haiser HJ, Turnbaugh PJ, Balskus EP (2015) Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria. Mbio. https://doi.org/10.1128/mBio.00042-15

Matanguihan JB, Murphy KM, Jones SS (2011) Control of common bunt in organic wheat. Plant Dis 95:92–103. https://doi.org/10.1094/PDIS-09-10-0620

Mathre DE (1996) DWARF BUNT: politics, identification, and biology. Annu Rev Phytopathol 34:67–85. https://doi.org/10.1146/annurev.phyto.34.1.67

McCarthy CGP, Fitzpatrick DA (2019) Pan-genome analyses of model fungal species. Microbial Genomics 5:e000243. https://doi.org/10.1099/mgen.0.000243

Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39:W339–W346. https://doi.org/10.1093/nar/gkr466

Min XJ (2010) Evaluation of computational methods for secreted protein prediction in different eukaryotes. J Proteom Bioinform 3:143–147. https://doi.org/10.4172/jpb.1000133

Mirarab S, Warnow T (2015) ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics 31:i44–i52. https://doi.org/10.1093/bioinformatics/btv234

Mishra P, Maurya R, Gupta VK, Ramteke PW, Marla SS, Kumar A (2019) Comparative genomic analysis of monosporidial and monoteliosporic cultures for unraveling the complexity of molecular pathogenesis of Tilletia indica pathogen of wheat. Sci Rep 9:8185. https://doi.org/10.1038/s41598-019-44464-0

Mouyna I, Hartl L, Latge JP (2013) beta-1,3-glucan modifying enzymes in Aspergillus fumigatus. Front Microbiol 4:81. https://doi.org/10.3389/fmicb.2013.00081

Müller O, Schreier PH, Uhrig JF (2008) Identification and characterization of secreted and pathogenesis-related proteins in Ustilago maydis. Mol Genet Genomics 279:27–39. https://doi.org/10.1007/s00438-007-0291-4

Muszewska A, Steczkiewicz K, Stepniewska-Dziubinska M, Ginalski K (2019) Transposable elements contribute to fungal genes and impact fungal lifestyle. Sci Rep 9:4307. https://doi.org/10.1038/s41598-019-40965-0

Navarro-Muñoz JC, Collemare J (2020) Evolutionary histories of type III polyketide synthases in fungi. Front Microbiol. https://doi.org/10.3389/fmicb.2019.03018

Nguyen HDT, Sultana T, Kesanakurti P, Hambleton S (2019) Genome sequencing and comparison of five Tilletia species to identify candidate genes for the detection of regulated species infecting wheat. IMA Fungus. https://doi.org/10.1186/s43008-019-0011-9

Nielsen J (1963) Trimethylammonium compounds in Tilletia Spp. Can J Bot 41:335–339. https://doi.org/10.1139/b63-032

Nielsen J (1968) The inheritance of spore wall characteristics in Ustilago avenae and U. kolleri. Can J Bot 46:497–500

Ohm RA, Feau N, Henrissat B, Schoch CL, Horwitz BA, Barry KW, Condon BJ, Copeland AC, Dhillon B, Glaser F, Hesse CN, Kosti I, LaButti K, Lindquist EA, Lucas S, Salamov AA, Bradshaw RE, Ciuffetti L, Hamelin RC, Kema GHJ, Lawrence C, Scott JA, Spatafora JW, Turgeon BG, de Wit PJGM, Zhong S, Goodwin SB, Grigoriev IV (2012) Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen dothideomycetes fungi. PLoS Pathog 8:e1003037. https://doi.org/10.1371/journal.ppat.1003037

Oide S, Moeder W, Krasnoff S, Gibson D, Haas H, Yoshioka K, Turgeon BG (2006) NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell 18:2836–2853. https://doi.org/10.1105/tpc.106.045633

Ökmen B, Kemmerich B, Hilbig D, Wemhöner R, Aschenbroich J, Perrar A, Huesgen PF, Schipper K, Doehlemann G (2018) Dual function of a secreted fungalysin metalloprotease in Ustilago maydis. New Phytol 220:249–261. https://doi.org/10.1111/nph.15265

Oliver RP, Solomon PS (2010) New developments in pathogenicity and virulence of necrotrophs. Curr Opin Plant Biol 13:415–419. https://doi.org/10.1016/j.pbi.2010.05.003

Parra G, Bradnam K, Korf I (2007) CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23:1061–1067. https://doi.org/10.1093/bioinformatics/btm071

Persoons A, Morin E, Delaruelle C, Payen T, Halkett F, Frey P, De Mita S, Duplessis S (2014) Patterns of genomic variation in the poplar rust fungus Melampsora larici-populina identify pathogenesis-related factors. Front Plant Sci. https://doi.org/10.3389/fpls.2014.00450

Peterson GL, Whitaker TB, Stefanski RJ, Podleckis EV, Phillips JG, Wu JS, Martinez WH (2009) A risk assessment model for importation of United States milling wheat containing Tilletia contraversa. Plant Dis 93:560–573. https://doi.org/10.1094/PDIS-93-6-0560

Pimentel G, Peever TL, Carris LM (2000) Genetic variation among natural populations of Tilletia controversa and T. bromi. Phytopathology 90:376–383. https://doi.org/10.1094/PHYTO.2000.90.4.376

Pizarro D, Divakar PK, Grewe F, Leavitt SD, Huang JP, Dal Grande F, Schmitt I, Wedin M, Crespo A, Lumbsch HT (2018) Phylogenomic analysis of 2556 single-copy protein-coding genes resolves most evolutionary relationships for the major clades in the most diverse group of lichen-forming fungi. Fungal Diversity 92:31–41. https://doi.org/10.1007/s13225-018-0407-7

Price AL, Jones NC, Pevzner PA (2005) De novo identification of repeat families in large genomes. Bioinformatics 21(Suppl 1):i351–i358. https://doi.org/10.1093/bioinformatics/bti1018

Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5:e9490. https://doi.org/10.1371/journal.pone.0009490

Purdy LH, Kendrick EL, Hoffmann JA, Holton CS (1963) Dwarf bunt of wheat. Annu Rev Microbiol 17:199–222. https://doi.org/10.1146/annurev.mi.17.100163.001215

Pusztahelyi T, Holb I, Pócsi I (2015) Secondary metabolites in fungus-plant interactions. Front Plant Sci. https://doi.org/10.3389/fpls.2015.00573

R Development Core Team (2013) R: A Language and Environment for Statistical Computing, R foundation for Statistical Computing, Vienna, Austria

Rannala B, Yang Z (2003) Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164:1645–1656

Razali NM, Cheah BH, Nadarajah K (2019) Transposable elements adaptive role in genome plasticity, pathogenicity and evolution in fungal phytopathogens. Int J Mol Sci. https://doi.org/10.3390/ijms20143597

Redkar A, Hoser R, Schilling L, Zechmann B, Krzymowska M, Walbot V, Doehlemann G (2015a) A secreted effector protein of Ustilago maydis guides maize leaf cells to form tumors. Plant Cell 27:1332–1351. https://doi.org/10.1105/tpc.114.131086

Redkar A, Villajuana-Bonequi M, Doehlemann G (2015b) Conservation of the Ustilago maydis effector See1 in related smuts. Plant Signal Behav 10:e1086855–e1086855. https://doi.org/10.1080/15592324.2015.1086855

Robinson PM, McKee ND, Thompson LAA, Harper DB, Hamilton JTG (1989) Autoinhibition of germination and growth in Geotrichum candidum. Mycol Res 93:214–222. https://doi.org/10.1016/s0953-7562(89)80120-0

Röttig M, Medema MH, Blin K, Weber T, Rausch C, Kohlbacher O (2011) NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res 39:W362–W367. https://doi.org/10.1093/nar/gkr323

Rouxel T, Grandaubert J, Hane JK, Hoede C, van de Wouw AP, Couloux A, Dominguez V, Anthouard V, Bally P, Bourras S, Cozijnsen AJ, Ciuffetti LM, Degrave A, Dilmaghani A, Duret L, Fudal I, Goodwin SB, Gout L, Glaser N, Linglin J, Kema GHJ, Lapalu N, Lawrence CB, May K, Meyer M, Ollivier B, Poulain J, Schoch CL, Simon A, Spatafora JW, Stachowiak A, Turgeon BG, Tyler BM, Vincent D, Weissenbach J, Amselem J, Quesneville H, Oliver RP, Wincker P, Balesdent M-H, Howlett BJ (2011) Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations. Nat Commun 2:202. https://doi.org/10.1038/ncomms1189

Rudloff JE, Bauer R, Büttner P, Sedaghtjoo S, Kirsch N, Maier W (2020) Monitoring zum Vorkommen von Tilletia controversa (Zwergsteinbrand) an konventionell erzeugtem Winterweizen in den Bundesländern Brandenburg, Mecklenburg-Vorpommern, Niedersachsen, Nordrhein-Westfalen, Sachsen, Sachsen-Anhalt Und Schleswig-Holstein. Kulturpflanzen 72:7. https://doi.org/10.5073/JfK.2020.08.16

Russell BW, Mills D (1993) Electrophoretic karyotypes of Tilletia caries, T. controversa, and their F1 progeny: further evidence for conspecific status. Mol Plant Microbe Interact 6:66–74. https://doi.org/10.1094/mpmi-6-066

Ruzgas V, Liatukas Ž (2008) Resistance genes and sources for the control of wheat common bunt (Tilletia tritici (DC.) Tul.). Biologija 54:274–278. https://doi.org/10.2478/v10054-008-0056-y

Sabot F, Schulman AH (2006) Parasitism and the retrotransposon life cycle in plants: a hitchhiker’s guide to the genome. Heredity (edinb) 97:381–388. https://doi.org/10.1038/sj.hdy.6800903

Sayyari E, Mirarab S (2016) Fast coalescent-based computation of local branch support from quartet frequencies. Mol Biol Evol 33:1654–1668. https://doi.org/10.1093/molbev/msw079

Scherer M, Heimel K, Starke V, Kämper J (2006) The Clp1 protein is required for clamp formation and pathogenic development of Ustilago maydis. Plant Cell 18:2388–2401. https://doi.org/10.1105/tpc.106.043521

Schipper K (2009) Charakterisierung eines Ustilago maydis Genclusters, das für drei neuartige sekretierte Effektoren kodiert Biologie Philipps-Universität Marburg Marburg

Sedaghatjoo S, Forster MK, Niessen L, Karlovsky P, Killermann B, Maier W (2021) Development of a loop-mediated isothermal amplification assay for the detection of Tilletia controversa based on genome comparison. Sci Rep 11:11611. https://doi.org/10.1038/s41598-021-91098-2

Seitner D, Uhse S, Gallei M, Djamei A (2018) The core effector Cce1 is required for early infection of maize by Ustilago maydis. Mol Plant Pathol 19:2277–2287. https://doi.org/10.1111/mpp.12698

Sharma R, Ökmen B, Doehlemann G, Thines M (2018) Pseudozyma saprotrophic yeasts have retained a large effector arsenal, including functional Pep1 orthologs. bioRxiv. https://doi.org/10.1101/489690

Shwab EK, Keller NP (2008) Regulation of secondary metabolite production in filamentous ascomycetes. Mycol Res 112:225–230. https://doi.org/10.1016/j.mycres.2007.08.021

Sillo F, Garbelotto M, Friedman M, Gonthier P (2015) Comparative genomics of sibling fungal pathogenic taxa identifies adaptive evolution without divergence in pathogenicity genes or genomic structure. Genome Biol Evol 7:3190–3206. https://doi.org/10.1093/gbe/evv209

Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212. https://doi.org/10.1093/bioinformatics/btv351

Singh J, Trione E (1969) Self inhibition of the germination of bunt teliospores of Tilletia caries and of Tilletia controversa. Phytopathology 59:15

Skibbe DS, Doehlemann G, Fernandes J, Walbot V (2010) Maize tumors caused by Ustilago maydis; require organ-specific genes in host and pathogen. Science 328:89. https://doi.org/10.1126/science.1185775

Smit A, Hubley R, Green P (2008–2019) RepeatModeler. http://www.repeatmasker.org/RepeatModeler/. Accessed 05 Sep 2019

Smit A, Hubley R, Green P (2013–2015) RepeatMasker Open-4.0.9. http://www.repeatmasker.org/. Accessed 05 Sep 2019b

Soberanes-Gutiérrez CV, Juárez-Montiel M, Olguín-Rodríguez O, Hernández-Rodríguez C, Ruiz-Herrera J, Villa-Tanaca L (2015) The pep4 gene encoding proteinase A is involved in dimorphism and pathogenesis of Ustilago maydis. Mol Plant Pathol 16:837–846. https://doi.org/10.1111/mpp.12240

Sperschneider J, Dodds PN, Gardiner DM, Singh KB, Taylor JM (2018) Improved prediction of fungal effector proteins from secretomes with EffectorP 2.0. Mol Plant Pathol 19:2094–2110. https://doi.org/10.1111/mpp.12682

Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505. https://doi.org/10.1016/s1074-5521(99)80082-9

Stanke M, Schöffmann O, Morgenstern B, Waack S (2006) Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinform 7:62. https://doi.org/10.1186/1471-2105-7-62

Stirnberg A, Djamei A (2016) Characterization of ApB73, a virulence factor important for colonization of Zea mays by the smut Ustilago maydis. Mol Plant Pathol 17:1467–1479. https://doi.org/10.1111/mpp.12442

Tanaka A, Tapper BA, Popay A, Parker EJ, Scott B (2005) A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol Microbiol 57:1036–1050. https://doi.org/10.1111/j.1365-2958.2005.04747.x

Teertstra WR, van der Velden GJ, de Jong JF, Kruijtzer JAW, Liskamp RMJ, Kroon-Batenburg LMJ, Müller WH, Gebbink MFBG, Wösten HAB (2009) The filament-specific Rep1-1 repellent of the phytopathogen Ustilago maydis forms functional surface-active amyloid-like fibrils. J Biol Chem 284:9153–9159

Trione EJ (1964) Isolation and in Vitro culture of the wheat bunt fungi Tilletia caries and Tilletia controversa. Phytopathology 54:592–596

Trione EJ, Ross WD (1988) Lipids as bioregulators of teliospore germination and sporidial formation in the wheat bunt fungi, Tilletia Species. Mycologia 80:38–45. https://doi.org/10.1080/00275514.1988.12025495

Vánky K (2008) Smut fungi (Basidiomycota p.p., Ascomycota p.p.) of the world. novelties, selected examples, trends. Acta Microbiol Immunol Hung 55:91–109. https://doi.org/10.1556/AMicr.55.2008.2.2

Vánky K (2012) Smut fungi of the world. American Phytopathological Society, Minnesota

Vesth TC, Nybo JL, Theobald S, Frisvad JC, Larsen TO, Nielsen KF, Hoof JB, Brandl J, Salamov A, Riley R, Gladden JM, Phatale P, Nielsen MT, Lyhne EK, Kogle ME, Strasser K, McDonnell E, Barry K, Clum A, Chen C, LaButti K, Haridas S, Nolan M, Sandor L, Kuo A, Lipzen A, Hainaut M, Drula E, Tsang A, Magnuson JK, Henrissat B, Wiebenga A, Simmons BA, Mäkelä MR, de Vries RP, Grigoriev IV, Mortensen UH, Baker SE, Andersen MR (2018) Investigation of inter- and intraspecies variation through genome sequencing of Aspergillus section Nigri. Nat Genet 50:1688–1695. https://doi.org/10.1038/s41588-018-0246-1

Wahl R, Wippel K, Goos S, Kämper J, Sauer N (2010) A novel high-affinity sucrose transporter is required for virulence of the plant pathogen Ustilago maydis. PLoS Biol 8:e1000303. https://doi.org/10.1371/journal.pbio.1000303

Wang A, Pang L, Wang N et al (2018) The pathogenic mechanisms of Tilletia horrida as revealed by comparative and functional genomics. Sci Rep 8:15413. https://doi.org/10.1038/s41598-018-33752-w

Wang A, Shu X, Niu X, Yi X, Zheng A (2020) Transcriptome analysis and whole genome re-sequencing provide insights on rice kernel smut (Tilletia horrida) pathogenicity. J Plant Pathol. 102(1):155–67. https://doi.org/10.1007/s42161-019-00401-8

Waterhouse RM, Tegenfeldt F, Li J, Zdobnov EM, Kriventseva EV (2013) OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs. Nucleic Acids Res 41:D358–D365. https://doi.org/10.1093/nar/gks1116

Weber RE, Pietsch M, Frühauf A, Pfeifer Y, Martin M, Luft D, Gatermann S, Pfennigwerth N, Kaase M, Werner G, Fuchs S (2019) IS26-mediated transfer of blaNDM–1 as the main route of resistance transmission during a polyclonal, multispecies outbreak in a German Hospital. Front Microbiol. https://doi.org/10.3389/fmicb.2019.02817

Whitaker TB, Wu J, Peterson GL, Giesbrecht FG, Johansson AS (2001) Variability associated with the official USDA sampling plan used to inspect export wheat shipments for Tilletia controversa spores. Plant Pathol 50:755–760. https://doi.org/10.1046/j.1365-3059.2001.00640.x

Woolma NHM, Humphrey HB (1924) Summary of literature on bunt or stinking smut of Wheat. United States Department of Agriculture

Wöstemeyer J, Kreibich A (2002) Repetitive DNA elements in fungi (Mycota): impact on genomic architecture and evolution. Curr Genet 41:189–198. https://doi.org/10.1007/s00294-002-0306-y

Wösten HA, Bohlmann R, Eckerskorn C, Lottspeich F, Bölker M, Kahmann R (1996) A novel class of small amphipathic peptides affect aerial hyphal growth and surface hydrophobicity in Ustilago maydis. EMBO J 15:4274–4281

Xu Y, Vinas M, Alsarrag A, Su L, Pfohl K, Rohlfs M, Schäfer W, Chen W, Karlovsky P (2019) Bis-naphthopyrone pigments protect filamentous ascomycetes from a wide range of predators. Nat Commun 10:3579. https://doi.org/10.1038/s41467-019-11377-5

Zdobnov EM, Tegenfeldt F, Kuznetsov D, Waterhouse RM, Simão FA, Ioannidis P, Seppey M, Loetscher A, Kriventseva EV (2016) OrthoDB v9.1: cataloging evolutionary and functional annotations for animal, fungal, plant, archaeal, bacterial and viral orthologs. Nucleic Acids Res 45:D744–D749. https://doi.org/10.1093/nar/gkw1119

Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829. https://doi.org/10.1101/gr.074492.107

Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, Busk PK, Xu Y, Yin Y (2018) dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 46:W95–W101. https://doi.org/10.1093/nar/gky418

Zhao Z, Liu H, Wang C, Xu J-R (2013) Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics 14:274. https://doi.org/10.1186/1471-2164-14-274