Comparative genome‐wide analysis of small RNAs of major Gram‐positive pathogens: from identification to application

Microbial Biotechnology - Tập 3 Số 6 - Trang 658-676 - 2010
Mobarak Abu Mraheil1,2, André Billion1,2, Carsten Kuenne2, Jordan Pischimarov2, Bernd Kreikemeyer3, Susanne Engelmann4, Axel Hartke5, Jean‐Christophe Giard5, Maja Rupnik6, Sonja Vorwerk7, Markus Beier7, Julia van der Meer8, Thomas Hartsch8, Anette Jacob9, Franz Cemič10, Jürgen Hemberger10, Trinad Chakraborty2, Torsten Hain2
1Both coauthors contributed equally to the work.
2Institute of Medical Microbiology, Justus-Liebig-University, Frankfurter Strasse 107, 35392 Giessen, Germany.
3Institute for Medical Microbiology, University of Rostock, Schillingallee 70, 18057 Rostock, Germany.
4Institute for Microbiology, University of Greifswald, Jahnstrasse 15, 17487 Greifswald, Germany.
5Laboratoire de Microbiologie de l'Université de Caen, EA956 USC INRA2017, 14032 CAEN cedex, France.
6University of Maribor, Faculty of Medicine, Slomskov trg 15, 2000 Maribor, Slovenia.
7febit biomed gmbh, Im Neuenheimer Feld 519, 69120 Heidelberg, Germany
8Genedata Bioinformatik GmbH, Lena-Christ-Str. 50, D-82152 Planegg-Martinsried, Germany.
9Functional Genome Analysis, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
10Institute for Biochemical Engineering and Analytics, University of Applied Sciences Giessen-Friedberg, Wiesenstasse 14, 35390 Giessen, Germany.

Tóm tắt

SummaryIn the recent years, the number of drug‐ and multi‐drug‐resistant microbial strains has increased rapidly. Therefore, the need to identify innovative approaches for development of novel anti‐infectives and new therapeutic targets is of high priority in global health care. The detection of small RNAs (sRNAs) in bacteria has attracted considerable attention as an emerging class of new gene expression regulators. Several experimental technologies to predict sRNA have been established for the Gram‐negative model organism Escherichia coli. In many respects, sRNA screens in this model system have set a blueprint for the global and functional identification of sRNAs for Gram‐positive microbes, but the functional role of sRNAs in colonization and pathogenicity for Listeria monocytogenes, Staphylococcus aureus, Streptococcus pyogenes, Enterococcus faecalis and Clostridium difficile is almost completely unknown. Here, we report the current knowledge about the sRNAs of these socioeconomically relevant Gram‐positive pathogens, overview the state‐of‐the‐art high‐throughput sRNA screening methods and summarize bioinformatics approaches for genome‐wide sRNA identification and target prediction. Finally, we discuss the use of modified peptide nucleic acids (PNAs) as a novel tool to inactivate potential sRNA and their applications in rapid and specific detection of pathogenic bacteria.

Từ khóa


Tài liệu tham khảo

10.1111/j.1574-6968.1999.tb13483.x

10.1093/nar/gng151

10.1093/bioinformatics/btk014

10.1016/j.ijmm.2005.02.010

10.1038/nrg1046

10.1186/1471-2180-7-10

10.1101/gad.423507

10.1093/bioinformatics/bth374

10.1093/nar/gng120

10.1016/S0021-9258(18)47090-1

10.1093/bioinformatics/btn544

10.1371/journal.ppat.1000449

10.1034/j.1601-0825.2002.1o816.x

Carney J., 2006, Present and future applications of gold in rapid assays, IVD Technol, 12, 41

10.1074/jbc.M107401200

10.1021/ac010264j

10.1128/IAI.74.2.1323-1338.2006

10.1128/JB.186.11.3355-3362.2004

10.1261/rna.49706

10.1089/cmb.2005.12.83

10.1016/j.micinf.2008.07.043

10.1080/07853890252953464

10.1073/pnas.0404193101

10.1111/j.1365-2796.2008.01926.x

10.1093/bioinformatics/btg229

10.1128/JCM.43.8.4015-4021.2005

10.1016/j.ijmm.2007.02.008

10.1128/JB.183.24.7341-7353.2001

10.1099/jmm.0.47775-0

10.1128/AEM.67.4.1628-1635.2001

10.1261/rna.844108

10.1128/jb.174.23.7642-7647.1992

10.1093/nar/gkg915

10.1093/nar/gkn766

10.1146/annurev.med.59.053006.104707

10.1111/j.1365-2958.2006.05292.x

10.1093/nar/gkp668

10.1128/9781555817923.ch8

10.1371/journal.pone.0006061

10.1073/pnas.95.5.2073

Graves L.M., 2009, Listeria marthii sp. nov., isolated from the natural environment, Finger Lakes National Forest, Int J Syst Evol Microbiol

10.1016/0014-5793(71)80304-6

10.1093/nar/gkg006

10.1074/jbc.M603346200

10.1074/jbc.270.6.2620

10.1016/j.ijmm.2007.03.016

10.1186/1471-2180-8-20

10.1111/j.1365-2958.2007.05900.x

10.1089/oli.2006.0053

10.1016/0022-2836(67)90248-3

10.1055/s-2007-982034

10.1038/sj.emboj.7600572

Ikemura T., 1973, Small ribonucleic acids of Escherichia coli. I. Characterization by polyacrylamide gel electrophoresis and fingerprint analysis, J Biol Chem, 248, 5024

10.1073/pnas.92.26.12055

10.1016/S0092-8674(02)00905-4

10.1128/JB.188.2.556-568.2006

10.1007/s00253-006-0434-2

10.1073/pnas.112063799

10.1111/j.1462-5822.2005.00548.x

10.1016/S0169-409X(02)00182-5

10.1021/bc800068h

10.1046/j.1365-2958.2001.02226.x

10.1016/S0966-842X(03)00098-2

10.1016/j.ijmm.2004.06.017

10.1016/S0140-6736(00)04403-2

10.1128/AAC.00709-06

10.1046/j.1365-2958.2003.03843.x

10.1128/JB.00030-06

Lambert J.L. andFischer A.L.(2005)Diagnostic assays including multiplexed lateral flow immunoassays with Quantum dots. 20050250141. 10‐11‐2005. United States.

Le S.V., 1988, A program for predicting significant RNA secondary structures, Comput Appl Biosci, 4, 153

10.1016/j.cell.2004.06.009

Li Z., 1999, Identification of pel, a Streptococcus pyogenes locus that affects both surface and secreted proteins, J Bacteriol, 181, 6019, 10.1128/JB.181.19.6019-6027.1999

10.1371/journal.pgen.0020029

10.1093/nar/gkp080

10.1371/journal.pone.0003197

10.1016/j.tim.2006.05.001

10.1038/nprot.2006.372

10.1093/nar/gkl1096

10.1111/j.1365-2958.2004.04222.x

10.1021/ac8024653

10.1101/gr.089714.108

10.1128/AAC.00917-08

10.1016/j.copbio.2006.01.008

10.1016/j.bbrc.2007.04.172

10.1002/j.1460-2075.1995.tb00136.x

10.1128/AAC.42.4.971

10.1016/S0002-9440(10)61232-1

10.1111/j.1574-6976.2005.004.x

10.1016/j.ceb.2009.03.002

10.1016/j.ymthe.2004.07.006

10.1128/JB.00740-08

10.1002/j.1460-2075.1993.tb06074.x

10.1016/j.ijfoodmicro.2007.08.017

10.1093/nar/gkn050

10.1111/j.1365-2958.2007.05695.x

10.1073/pnas.96.8.4285

10.1038/nbt720

10.1371/journal.pone.0007668

10.1073/pnas.0503838102

10.1128/JB.183.11.3372-3382.2001

10.1128/AEM.00951-07

10.1007/BF00330517

10.1128/IAI.00161-08

10.1186/1471-2105-6-63

10.1093/bioinformatics/16.7.583

10.1186/1471-2105-2-8

10.1111/j.1365-2958.2007.06015.x

10.1126/science.276.5316.1192

10.1038/nrmicro2164

10.1093/nar/30.9.2076

Seal J., 2006, Point‐of‐care nucleic acid lateral‐flow tests, In Vitro Diagn Technol, 41

10.1038/82367

10.1093/nar/gkm210

10.1016/j.mib.2009.07.006

10.1111/j.1365-2958.2005.04780.x

10.1046/j.1365-2958.2002.02743.x

10.1128/JB.01316-08

10.1146/annurev.arplant.043008.092032

10.1371/journal.pgen.1000163

10.1016/j.mib.2004.02.015

10.1073/pnas.78.10.6008

10.1128/JB.187.8.2836-2845.2005

10.1093/nar/gkf508

10.1016/j.bios.2008.02.009

10.1128/AAC.49.8.3203-3207.2005

10.1128/IAI.70.4.1991-1996.2002

10.1038/nature08080

10.1073/pnas.78.3.1421

Tondra M., 2007, Using integrated magnetic microchip devices in IVDs, IVD Technol, 13, 33

10.1186/1471-2105-7-173

10.1099/mic.0.2007/006361-0

10.1128/IAI.72.8.4424-4431.2004

10.1099/mic.0.28325-0

10.1111/j.1365-2958.2008.06505.x

10.1016/j.mib.2007.06.001

10.1093/nar/gkg867

10.1073/pnas.0409169102

10.1016/j.cell.2009.01.043

10.1016/j.mib.2007.03.002

10.1046/j.1462-5822.2003.00348.x

10.1002/pmic.200400937