Comparative expression profile of some putative resistance genes of chickpea genotypes in response to ascomycete fungus, Ascochyta rabiei (Pass.) Labr.

Ayub Andam1, Abdolbaset Azizi2, Mohammad Majdi1, Jafar Abdolahzadeh2
1Department of Agronomy and Plant Breeding, University of Kurdistan, Sanandaj, Iran
2Department of Plant Protection, University of Kurdistan, Sanandaj, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Augustin LS, Chiavaroli L, Campbell J, Ezatagha A, Jenkins AL, Esfahani A, Kendall CW (2015) Post-prandial glucose and insulin responses of hummus alone or combined with a carbohydrate food: a dose–response study. Nutrition 15:13. https://doi.org/10.1186/s12937-016-0129-1

Bowdish DM, Davidson DJ, Hancock R (2005) A re-evaluation of the role of host defense peptides in mammalian immunity. Curr Protein Pept Sci 6:35–51. https://doi.org/10.2174/1389203053027494

Broekaert WF, Terras FR, Cammue BP, Osborn RW (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system. J Plant Physiol 108:1353. https://doi.org/10.1104/pp.108.4.1353

Chen Y, Strange R (1991) Synthesis of the solanapyrone phytotoxins by Ascochyta rabiei in response to metal cations and development of a defined medium for toxin production. Plant Pathol 40:401–407. https://doi.org/10.1111/j.1365-3059.1991.tb02397.x

Chen W, Coyne CJ, Peever TL, Muehlbauer FJ (2004) Characterization of chickpea differentials for pathogenicity assay of ascochyta blight and identification of chickpea accessions resistant to Didymella rabiei. Plant Pathol 53(6):759–769

Cho S, Muehlbauer F (2004) Genetic effect of differentially regulated fungal response genes on resistance to necrotrophic fungal pathogens in chickpea (Cicer arietinum L.). Physiol Mol Plant P 64:57–66. https://doi.org/10.1016/j.pmpp.2004.07.003

Coram TE, Pang EC (2005a) Isolation and analysis of candidate ascochyta blight defense genes in chickpea. Part I. Generation and analysis of an expressed sequence tag (EST) library. Physiol Mol Plant P 66:192–200. https://doi.org/10.1016/j.pmpp.2005.08.003

Coram TE, Pang EC (2005b) Isolation and analysis of candidate ascochyta blight defense genes in chickpea. Part II. Microarray expression analysis of putative defense-related ESTs. Physiol Mol Plant P 66:201–210. https://doi.org/10.1016/j.pmpp.2005.08.002

Coram TE, Pang EC (2006) Expression profiling of chickpea genes differentially regulated during a resistance response to Ascochyta rabiei. Plant Biotechnol J 4:647–666. https://doi.org/10.1111/j.1467-7652.2006.00208.x

Cummings JH, Stephen AM, Branch WJ (1981) Implications of dietary fibre breakdown in the human colon. Banbury Rep USA 1:71–81

D’ovidio R, Roberti S, Di Giovanni M, Capodicasa C, Melaragni M, Sella L, Favaron F (2006) The characterization of the soybean polygalacturonase-inhibiting proteins (Pgip) gene family reveals that a single member is responsible for the activity detected in soybean tissues. Planta 224:633–645. https://doi.org/10.1007/s00425-006-0235-y

Edereva A (2005) Pathogenesis-related proteins: research progress in the last 15 years. Gen Appl Plant Physiol 31:105–124

Eitas TK, Dangl JL (2010) NB-LRR proteins: pairs, pieces, perception, partners, and pathways. Curr Opin Plant Biol 13:472–477. https://doi.org/10.1016/j.pbi.2010.04.007

Elliott VL, Taylor PW, Ford R (2011) Pathogenic variation within the 2009 Australian Ascochyta rabiei population and implications for future disease management strategy. Australas Plant Pathol 40:568–574. https://doi.org/10.1007/s13313-011-0087-1

Farina A, Rocchi V, Janni M, Benedettelli S, De Lorenzo G, D’Ovidio R (2009) The bean polygalacturonase-inhibiting protein 2 (PvPGIP2) is highly conserved in common bean (Phaseolus vulgaris L.) germplasm and related species. Theor Appl Genet 118:1371–1379. https://doi.org/10.1007/s00122-009-0987-4

Food and Agriculture Organization (2016) FAO statistical databases–agricultural production. http://www.fao.org/faostat/en/#data/QC

Haware MP, Van Rheenen HA, Prasad SS (1995) Screening for Ascochyta blight resistance in chickpea under controlled environment and field conditions. Plant Dis 79:132–135. https://doi.org/10.1094/PD-79-0132

Iruela M, Castro P, Rubio J, Cubero JI, Jacinto C, Millán T, Gil J (2007) Validation of a QTL for resistance to ascochyta blight linked to resistance to fusarium wilt race 5 in chickpea (Cicer arietinum L.). Eur J Plant Pathol 119:29–37. https://doi.org/10.1007/978-1-4020-6065-6_4

Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323. https://doi.org/10.1038/nature05286

Jukanti AK, Gaur PM, Gowda C, Chibbar RN (2012) Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. Br J Nutr 108:11–26. https://doi.org/10.1017/S0007114512000797

Kaiser WJ (1997) Inter-and intra national spread of ascochyta pathogens of chickpea, faba bean, and lentil. Can J Plant Pathol 19:215–224. https://doi.org/10.1080/07060669709500556

Karri V, Bharadwaja KP (2013) Tandem combination of Trigonella foenum-graecum defensin (Tfgd2) and Raphanus sativus antifungal protein (RsAFP2) generates a more potent antifungal protein. Funct Integr Genom 13:435–443. https://doi.org/10.1007/s10142-013-0334-3

Kohler G, Linkert C, Barz W (1995) Infection studies of (Cicer arietinum L.) with GUS-(E. coli-glucuronidase) transformed Ascochyta rabiei strains. J Phytopathol 143:589–595. https://doi.org/10.1111/j.1439-0434.1995.tb00206.x

Kombrink E, Schmelzer E (2001) The hypersensitive response and its role in local and systemic disease resistance. Eur J Plant Pathol 107:69–78. https://doi.org/10.1023/a:1008736629717

Leo AE, Ford R, Linde CC (2016) Genetic homogeneity of a recently introduced pathogen of chickpea, Ascochyta rabiei, to Australia. Biol Invasions 17:609–623. https://doi.org/10.1007/s10530-014-0752-8

Mabrouk Y, Charaabi K, Mahiout D, Rickauer M, Belhadj O (2018) Evaluation of chickpea (Cicer arietinum L.) irradiation-induced mutants for resistance to ascochyta blight in controlled environment. Braz J Bot 41:311. https://doi.org/10.1007/s40415-018-0458-8

Mathers JC (2002) Pulses and carcinogenesis: potential for the prevention of colon, breast and other cancers. Br J Nutr 88:273–279. https://doi.org/10.1079/BJN2002717

McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40:349–379. https://doi.org/10.1146/annurev.phyto.40.120501.101443

Mello EO, Ribeiro SF, Carvalho AO, Santos IS, Da Cunha M, Santa-Catarina C, Gomes VM (2011) Antifungal activity of PvD1 defensin involves plasma membrane permeabilization, inhibition of medium acidification, and induction of ROS in fungi cells. Curr Microbiol 62:1209–1217. https://doi.org/10.1007/s00284-010-9847-3

Moy P, Qutob D, Chapman B, Atkinson I, Gijzen M (2004) Patterns of gene expression upon infection of soybean plants by Phytophthora sojae. MPMI 17:1051–1062. https://doi.org/10.1094/MPMI.2004.17.10.1051

Murty CM, Pittaway JK, Ball MJ (2010) Chickpea supplementation in an Australian diet affects food choice, satiety and bowel health. Appetite 54:282–288. https://doi.org/10.1016/j.appet.2009.11.012

Nawrot R, Barylski J, Nowicki G, Broniarczyk J, Buchwald W, Goździcka-Józefiak A (2014) Plant antimicrobial peptides. Folia Microbiol 59:181–196. https://doi.org/10.1007/s12223-013-0280-4

Nehra K, Chugh L, Dhillon S, Singh R (1994) Induction, purification and characterization of chitinases from chickpea (Cicer arietinum L.) leaves and pods infected with Ascochyta rabiei. J Plant Physiol 144:7–11. https://doi.org/10.1016/S0176-1617(11)80983-1

Otte O, Barz W (2000) Characterization and oxidative in vitro cross-linking of an extensin-like protein and a proline-rich protein purified from chickpea cell walls. Phytochemistry 53:1–5. https://doi.org/10.1016/S0031-9422(99)00463-X

Pande S, Siddique KHM, Kishore GK, Bayaa B, Gaur PM, Gowda CLL, Crouch JH (2005) Ascochyta blight of chickpea (Cicer arietinum L.): a review of biology, pathogenicity, and disease management. Aust J Agric Res 56:317–332. https://doi.org/10.1071/AR04143

Pande S, Sharma M, Gaur P, Tripathi S, Kaur L, Basandrai A, Siddique K (2011a) Development of screening techniques and identification of new sources of resistance to Ascochyta blight disease of chickpea. Australas Plant Pathol 40:149–156. https://doi.org/10.1007/s13313-010-0024-8

Pande S, Sharma M, Mangla UN, Ghosh R, Sundaresan G (2011b) Phytophthora blight of Pigeonpea [Cajanus cajan (L.) Millsp. An updating review of biology, pathogenicity and disease management. Crop Prot 30:951–957. https://doi.org/10.1016/j.cropro.2011.03.031

Pandey B, Singh U, Chaube H (1987) Mode of infection of ascochyta blight of chickpea caused by Ascochyta rabiei. Phytopathology 119:88. https://doi.org/10.1111/j.1439-0434.1987.tb04387.x

Papanikolaou Y, Fulgoni VL (2008) Bean consumption is associated with greater nutrient intake, reduced systolic blood pressure, lower body weight, and a smaller waist circumference in adults: results from the national health and nutrition examination survey 1999–2002. JACN 27:569–576. https://doi.org/10.1080/07315724.2008.10719740

Pelegrini PB, Franco OL (2005) Plant γ-thionins: novel insights on the mechanism of action of a multi-functional class of defense proteins. Int J Biochem Cell Biol 37:2239–2253. https://doi.org/10.1016/j.biocel.2005.06.011

Pittaway JK, Robertson IK, Ball MJ (2008) Chickpeas may influence fatty acid and fiber intake in an ad libitum diet, leading to small improvements in serum lipid profile and glycemic control. J Am Diet Assoc 108:1009–1013. https://doi.org/10.1016/j.jada.2008.03.009

Rajesh P, Tekeoglu M, Gupta V, Ranjekar P, Muehlbauer F (2002) Molecular mapping and characterisation of an RGA locus RGAPtokin1-2 171 in chickpea. Euphytica 128:427–433. https://doi.org/10.1023/A:1021246600340

Raju S, Jayalakshmi SK, Sreeramulu K (2008) Comparative study on the induction of defense related enzymes in two different cultivars of chickpea (Cicer arietinum L) genotypes by salicylic acid, spermine and Fusarium oxysporum f. sp. cicero. AJCS 2:121–140

Rea G, Metoui O, Infantino A, Federico R, Angelini R (2002) Copper amine oxidase expression in defense responses to wounding and Ascochyta rabiei invasion. Plant Physiol 128:865–875. https://doi.org/10.1104/pp.010646

Santra S, Zhang P, Wang K, Tapec R, Tan W (2001) Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal Chem 73:4988–4993. https://doi.org/10.1021/ac010406+

Segura J, Ventura R, Jurado C (1998) Derivatization procedures for gas chromatographic–mass spectrometric determination of xenobiotics in biological samples, with special attention to drugs of abuse and doping agents. J Chromatogr B Biomed Sci Appl 713:61–90. https://doi.org/10.1016/S0378-4347(98)00089-9

Singh KB, Reddy MV (1996) Improving chickpea yield by incorporating resistance to ascochyta blight. Theor Appl Genet 92:509–515. https://doi.org/10.1007/BF00224552

Singh R, Sindhu A, Singal H (2003) Biochemical basis of resistance in chickpea (Cicer arietinum L.) against Fusarium wilt. Acta Phytopathol Entomol Hung 38:13–19. https://doi.org/10.1556/APhyt.38.2003.1-2.3

Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Millan T (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240. https://doi.org/10.1038/nbt.2491

Wallace TC, Murray R, Zelman KM (2016) The nutritional value and health benefits of chickpeas and hummus. Nutrients 8:766. https://doi.org/10.3390/nu8120766

Yang Y, Pedersen JO (1997) A comparative study on feature selection in text categorization. In: International conference on machine learning, vol 97, pp 412–420. http://www.surdeanu.info/mihai/teaching/ista555-spring15/readings/yang97comparative.pdf

Yin F, Pajak A, Chapman R, Sharpe A, Huang S, Marsolais F (2011) Analysis of common bean expressed sequence tags identifies sulfur metabolic pathways active in seed and sulfur-rich proteins highly expressed in the absence of phaseolin and major lectins. BMC Genom 12:268. https://doi.org/10.1186/1471-2164-12-268