Comparative exergoeconomic evaluation of integrated solar combined-cycle (ISCC) configurations

Renewable Energy - Tập 185 - Trang 680-691 - 2022
Louay Elmorsy1, Tatiana Morosuk2, George Tsatsaronis2
1Energy Engineering Department, Campus El Gouna, Technische Universität Berlin, Ackerstraße 76, 13355, Berlin, Germany
2Institute for Energy Engineering, Technische Universität Berlin, Marchstr 18, 10587, Berlin, Germany

Tài liệu tham khảo

United Nations, 2019 International Energy Agency Kuravi, 2013, Thermal energy storage technologies and systems for concentrating solar power plants, Prog. Energy Combust. Sci., 39, 285, 10.1016/j.pecs.2013.02.001 SolarPACES, 2016 del Río, 2018, An overview of drivers and barriers to concentrated solar power in the European Union, Renew. Sustain. Energy Rev., 81, 1019, 10.1016/j.rser.2017.06.038 Kost, 2018 van Sark, 2020 Islam, 2018, A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: current status and research trends, Renew. Sustain. Energy Rev., 91, 987, 10.1016/j.rser.2018.04.097 González-Roubaud, 2017, Review of commercial thermal energy storage in concentrated solar power plants: steam vs. molten salts, Renew. Sustain. Energy Rev., 80, 133, 10.1016/j.rser.2017.05.084 International Energy Agency Pramanik, 2017, A review of concentrated solar power hybrid technologies, Appl. Therm. Eng., 127, 602, 10.1016/j.applthermaleng.2017.08.038 Franchini, 2013, A comparative study between parabolic trough and solar tower technologies in Solar Rankine Cycle and Integrated Solar Combined Cycle plants, Sol. Energy, 98, 302, 10.1016/j.solener.2013.09.033 Srivastva Alguacil, 2014, Direct steam generation in parabolic trough collectors, Energy Proc., 49, 21, 10.1016/j.egypro.2014.03.003 Libby, 2014, Assessment of direct steam generation technologies for solar thermal augmented steam cycle applications, 1420 Zavoico, 2001 Peterseim, 2012, Integrated solar combined cycle plants using solar power towers to optimise plant performance Bittencourt de Sá, 2018, Direct steam generation in linear solar concentration: experimental and modeling investigation – a review, Renew. Sustain. Energy Rev., 90, 910, 10.1016/j.rser.2018.03.075 Peterseim, 2013, Concentrated solar power hybrid plants, which technologies are best suited for hybridisation?, Renew. Energy, 57, 520, 10.1016/j.renene.2013.02.014 Wagner, 2012, Results and comparison from the SAM linear fresnel technology performance model, 2666 Behar, 2014, A review of integrated solar combined cycle system (ISCCS) with a parabolic trough technology, Renew. Sustain. Energy Rev., 39, 223, 10.1016/j.rser.2014.07.066 Feldhoff Rech, 2018, Optimum integration of concentrating solar technologies in a real coal-fired power plant for fuel saving, Energy Convers. Manag., 178, 299, 10.1016/j.enconman.2018.10.026 DLR Karellas, 2019, Solar thermal power plants, 179 Fernández-García, 2010, Parabolic-trough solar collectors and their applications, Renew. Sustain. Energy Rev., 14, 1695, 10.1016/j.rser.2010.03.012 Nezammahalleh, 2010, Conceptual design and techno-economic assessment of integrated solar combined cycle system with DSG technology, Sol. Energy, 84, 1696, 10.1016/j.solener.2010.05.007 Turchi, 2011, Gas turbine/solar parabolic trough hybrid designs, 1 Gülen, 2015, Second law analysis of integrated solar combined cycle power plants, J. Eng. Gas Turbines Power, 137, 1, 10.1115/1.4028741 Peterseim, 2013, Concentrated solar power hybrid plants, which technologies are best suited for hybridisation?, Renew. Energy, 57, 520, 10.1016/j.renene.2013.02.014 Rovira, 2016, Analysis and comparison of Integrated Solar Combined Cycles using parabolic troughs and linear Fresnel reflectors as concentrating systems, Appl. Energy, 162, 990, 10.1016/j.apenergy.2015.11.001 Rovira, 2013, Comparison of heat transfer fluid and direct steam generation technologies for integrated solar combined cycles, Appl. Therm. Eng., 52, 264, 10.1016/j.applthermaleng.2012.12.008 Manente, 2016, Optimum choice and placement of concentrating solar power technologies in integrated solar combined cycle systems, Renew. Energy, 96, 172, 10.1016/j.renene.2016.04.066 STEAG Energy Service GmbH ClimaTemps Elmorsy, 2020, Exergy-based analysis and optimization of an integrated solar combined-cycle power plant, Entropy, 22, 655, 10.3390/e22060655 Ahrendts, 1980, Reference States, Energy., 5, 667 Bejan, 1996 Ahrendts, 1988, Solarkraftwerke, Forsch. Im Ingenieurwes., 54 Ulrich, 1984, Chapter 5 capital cost estimation, 352 Petrakopoulou, 2011 Kurup Collado, 2016, Two-stages optimised design of the collector field of solar power tower plants, Sol. Energy, 135, 884, 10.1016/j.solener.2016.06.065 Turchi Lazzaretto, 2006, SPECO: a systematic and general methodology for calculating efficiencies and costs in thermal systems, Energy, 31, 1257, 10.1016/j.energy.2005.03.011 Zhu, 2014, History, current state, and future of linear Fresnel concentrating solar collectors, Sol. Energy, 103, 639, 10.1016/j.solener.2013.05.021 IRENA