Comparative evaluation of semi-quantitative CT-severity scoring versus serum lactate dehydrogenase as prognostic biomarkers for disease severity and clinical outcome of COVID-19 patients

Ahmed Magdy1, Mohamed Saad1, Ahmed F. El Khateeb2, Mona Ahmed3, Dina H. Gamal El-Din4
1Radiology department, Faculty of Medicine, Fayoum University, Fayoum, Egypt
2Department of Critical Care, Faculty of Medicine, Fayoum University, Fayoum, Egypt
3Department of Chest Disease and Tuberculosis, Faculty of Medicine, Fayoum University, Fayoum, Egypt
4Radiology Department, Faculty of Medicine, Cairo University, Cairo, Egypt

Tóm tắt

Abstract Background Coronavirus disease 2019 pandemic causes significant strain on healthcare infrastructure and medical resources. So, it becomes crucial to identify reliable predictor biomarkers for COVID-19 disease severity and short term mortality. Many biomarkers are currently investigated for their prognostic role in COVID-19 patients. Our study is retrospective and aims to evaluate role of semi-quantitative CT-severity scoring versus LDH as prognostic biomarkers for COVID-19 disease severity and short-term clinical outcome. Results Two hundred sixty-six patients between April 2020 and November 2020 with positive RT-PCR results underwent non-enhanced CT scan chest in our hospital and were retrospectively evaluated for CT severity scoring and serum LDH level measurement. Data were correlated with clinical disease severity. CT severity score and LDH were significantly higher in severe and critical cases compared to mild cases (P value < 0.001). High predictive significance of CT severity score for COVID-19 disease course noted, with cut-off value ≥ 13 highly predictive of severe disease (96.96% accuracy); cut-off value ≥ 16 highly predictive of critical disease (94.21% accuracy); and cut-off value ≥ 19 highly predictive of short-term mortality (92.56% accuracy). CT severity score has higher sensitivity, specificity, positive, and negative predictive values as well as overall accuracy compared to LDH level in predicting severe, critical cases, and short-term mortality. Conclusion Semi-quantitative CT severity scoring has high predictive significance for COVID-19 disease severity and short-term mortality with higher sensitivity, specificity, and overall accuracy compared to LDH. Our study strongly supports the use of CT severity scoring as a powerful prognostic biomarker for COVID-19 disease severity and short-term clinical outcome to allow triage of need for hospital admission, earlier medical interference, and to effectively prioritize medical resources for cases with high mortality risk for better decision making and clinical outcome.

Từ khóa


Tài liệu tham khảo

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506. https://doi.org/10.1016/S0140-6736(20)30183-5

Wu Z, McGoogan JM (2020) (2020). Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 323(13):1239–1242. https://doi.org/10.1001/jama.2020.2648 PMID: 32091533

Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, Tao Q, Sun Z, Xia L (2020) (2020). Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 Cases. Radiology. 296(2):E32–E40. https://doi.org/10.1148/radiol.2020200642

Inui S, Fujikawa A, Jitsu M, Kunishima N, Watanabe S, Suzuki Y, Umeda S, Uwabe Y (2020) Chest CT findings in cases from the cruise ship “Diamond Princess” with coronavirus disease 2019 (COVID-19). Radiol Cardiothoracic Imaging 2(2):e200110. Published 2020 Mar 17. https://doi.org/10.1148/ryct.2020200110

Yang R, Li X, Liu H et al (2020) Chest CT severity score: an imaging tool for assessing severe COVID-19. Radiol Cardiothoracic Imaging 2:2

Pan F, Ye T, Sun P, Gui S, Liang B, Li L, Zheng D, Wang J, Hesketh RL, Yang L, Zheng C (2020) Time course of lung changes at chest CT during recovery from coronavirus disease 2019 (COVID-19). Radiology 295(3):715–721. https://doi.org/10.1148/radiol.2020200370

Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell. 134(5):703–707. https://doi.org/10.1016/j.cell.2008.08.021

Martinez-Outschoorn UE, Prisco M, Ertel A, Tsirigos A, Lin Z, Pavlides S, Wang C, Flomenberg N, Knudsen ES, Howell A, Pestell RG, Sotgia F, Lisanti MP (2011) Ketones and lactate increase cancer cell "stemness," driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics. Cell Cycle. 10(8):1271–1286. https://doi.org/10.4161/cc.10.8.15330

Han Y, Zhang H, Mu S, Wei W, Jin C, Tong C, Song Z, Zha Y, Xue Y, Gu G (2020) (2020). Lactate dehydrogenase, an independent risk factor of severe COVID-19 patients: a retrospective and observational study. Aging. 12(12):11245–11258. https://doi.org/10.18632/aging.103372

Salvador Payán-Pernía MD, Lucía Gómez Pérez MD, Remacha Sevilla ÁF et al (2021) Absolute Lymphocytes, Ferritin, C-Reactive Protein, and Lactate Dehydrogenase Predict Early Invasive Ventilation in Patients With COVID-19. Lab Med 52(2):141–145. https://doi.org/10.1093/labmed/lmaa105

Tao RJ, Luo XL, Xu W et al (2018) Viral infection in community acquired pneumonia patients with fever: a prospective observational study. J Thorac Dis 10(7):4387–4395. https://doi.org/10.21037/jtd.2018.06.33

Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J', Yu T, Zhang X, Zhang L (2020) Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395(10223):507–513. https://doi.org/10.1016/S0140-6736(20)30211-7

Zhou F, Yu T, Du R et al (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 395(10229):1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3 [published correction appears in Lancet. 2020 Mar 28;395(10229):1038] [published correction appears in Lancet. 2020 Mar 28;395(10229):1038]

Weiss P, Murdoch DR (2020) (2020). Clinical course and mortality risk of severe COVID-19. Lancet. 395(10229):1014–1015. https://doi.org/10.1016/S0140-6736(20)30633-4

Wu C, Chen X, Cai Y, Xia J’, Zhou X, Xu S, Huang H, Zhang L, Zhou X, du C, Zhang Y, Song J, Wang S, Chao Y, Yang Z, Xu J, Zhou X, Chen D, Xiong W, Xu L, Zhou F, Jiang J, Bai C, Zheng J, Song Y (2020) Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 180(7):934–943. https://doi.org/10.1001/jamainternmed.2020.0994 [published correction appears in JAMA Intern Med. 2020 Jul 1;180(7):1031]

Henry BM, Aggarwal G, Wong J, Benoit S, Vikse J, Plebani M, Lippi G (2020) Lactate dehydrogenase levels predict coronavirus disease 2019 (COVID-19) severity and mortality: a pooled analysis. Am J Emerg Med. 38(9):1722–1726. https://doi.org/10.1016/j.ajem.2020.05.073

Francone M, Iafrate F, Masci GM et al (2020) Chest CT score in COVID-19 patients: correlation with disease severity and short-term prognosis. Eur Radiol 4:1–10

Li S, Liu S, Wang B et al (2021) Predictive value of chest CT scoring in COVID-19 patients in Wuhan, China: a retrospective cohort study. Respir Med 176:106271. https://doi.org/10.1016/j.rmed.2020.106271

Ioannidis JPA, Axfors C, Contopoulos-Ioannidis DG (2020) Population-level COVID-19 mortality risk for non-elderly individuals overall and for non-elderly individuals without underlying diseases in pandemic epicenters. Environ Res. 188:109890. https://doi.org/10.1016/j.envres.2020.109890

Sabri YY, MMT F, Nossair EZ et al (2020) CT findings of 795 COVID-19 positive cases: a multicenter study in Egypt. Egypt J Radiol Nucl Med 51(1):237 [cited 2020 Dec 2]. Available from. https://doi.org/10.1186/s43055-020-00351-7

Chung M, Bernheim A, Mei X, Zhang N, Huang M, Zeng X, Cui J, Xu W, Yang Y, Fayad ZA, Jacobi A, Li K, Li S, Shan H (2020) CT imaging features of 2019 novel coronavirus (2019-NCoV). Radiology 295(1):202–207. https://doi.org/10.1148/radiol.2020200230

Pan Y, Guan H, Zhou S, Wang Y, Li Q, Zhu T, Hu Q, Xia L (2020) Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019-nCoV): a study of 63 patients in Wuhan, China. Eur Radiol 30(6):3306–3309. https://doi.org/10.1007/s00330-020-06731-x

Sultan OM, Al-Tameemi H, Alghazali DM et al (2020) Pulmonary CT manifestations of COVID-19: changes within 2 weeks duration from presentation. Egypt J Radiol Nucl Med 51(1):1–7

Wang Y, Dong C, Li C et al (2020) Temporal changes of CT findings in 90 patients with COVID-19 pneumonia: a longitudinal study. Radiology 296(2):E55–E64. https://doi.org/10.1148/radiol.2020200843

Yuan M, Yin W, Tao Z et al (2020) Association of radiologic findings with mortality of patients infected with 2019 novel coronavirus in Wuhan, China. PLoS One 15(3):e0230548. https://doi.org/10.1371/journal.pone.0230548 PMID: 32191764; PMCID: PMC7082074

Liu N, He G, Yang X, Chen J, Wu J, Ma M, Lu W, Li Q, Cheng T, Huang X (2020) Dynamic changes of chest CT follow-up in coronavirus disease-19 (COVID-19) pneumonia: relationship to clinical typing. BMC Med Imaging 20(1):92. https://doi.org/10.1186/s12880-020-00491-2

Lv XT, Zhu YP, Cheng AG et al (2020) High serum lactate dehydrogenase and dyspnea: positive predictors of adverse outcome in critical COVID-19 patients in Yichang. World J Clin Cases 8(22):5535–5546. https://doi.org/10.12998/wjcc.v8.i22.5535

Zhou S, Chen C, Hu Y et al (2020) Chest CT imaging features and severity scores as biomarkers for prognostic prediction in patients with COVID-19. Annals Of Translational. Medicine 8(21):1449. https://doi.org/10.21037/atm-20-3421