Comparative analysis of the physicochemical characteristics of SiO2 aerogels prepared by drying under subcritical and supercritical conditions

Inorganic Materials - Tập 53 - Trang 1270-1278 - 2017
S. A. Lermontov1, A. N. Malkova1, N. A. Sipyagina1, Kh. E. Yorov2, G. P. Kopitsa3,4, A. E. Baranchikov2,5, V. K. Ivanov5,6, V. Pipich7, N. K. Szekely7
1Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Noginskii raion, Russia
2Moscow State University, Moscow, Russia
3Konstantinov Institute of Nuclear Physics, Kurchatov Institute National Research Center, Gatchina, Russia
4Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, St. Petersburg, Russia
5Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
6National Research Tomsk State University, Tomsk, Russia
7Jülich Centre for Neutron Science Outstation at MLZ, Garching, Germany

Tóm tắt

SiO2-based aerogels have been produced be removing a solvent (ethanol or hexafluoroisopropanol) from lyogels both above and below the critical temperature of the alcohols (in the range 210–260 and 160–220°C, respectively). The resultant materials have been characterized by low-temperature nitrogen adsorption measurements, X-ray diffraction, thermal analysis, scanning electron microscopy, X-ray microanalysis, and small-angle and ultrasmall-angle neutron scattering. The results demonstrate that removing the solvent 20–30°C below the critical temperature of the solvent yields silica that is characterized by higher specific porosity and has the same or a larger specific surface area in comparison with the aerogels produced by drying under supercritical conditions. The nature of the solvent used and the solvent removal temperature influence the size and aggregation behavior of primary clusters and the cluster aggregate size in the aerogels.

Tài liệu tham khảo

Kim, J., Nakanishi, H., Pollanen, J., Smoukov, S., Halperin, W.P., and Grzybowski, B.A., Nanoparticleloaded aerogels and layered aerogels cast from sol–gel mixtures, Small, 2011, vol. 7, no. 18, pp. 2568–2572. Nanomaterialy: Svoistva i perspektivnye primeneniya (Properties and Potential Applications of Nanomaterials), Yaroslavtsev, A.B., Ed., Moscow: Nauchnyi Mir, 2014. Schmidt, M. and Schwertfeger, F., Applications for silica aerogel products, J. Non-Cryst. Solids, 1998, vol. 225, pp. 364–368. Anderson, M.L., Stroud, R.M., Morris, C.A., Merzbacher, C.I., and Rolison, D.R., Tailoring advanced nanoscale materials through synthesis of composite aerogel architectures, Adv. Eng. Mater., 2000, vol. 2, no. 8, pp. 481–488. Pajonk, G.M., Catalytic aerogels, Catal. Today, 1997, vol. 35, no. 3, pp. 319–337. Melde, B.J., Johnson, B.J., and Charles, P.T., Mesoporous silicate materials in sensing, Sensors, 2008, vol. 8, no. 8, pp. 5202–5228. He, Y.L. and Xie, T., Advances of thermal conductivity models of nanoscale silica aerogel insulation material, Appl. Thermal Eng., 2015, vol. 81, pp. 28–50. Pierre, A.C. and Pajonk, G.M., Chemistry of aerogels and their applications, Chem. Rev., 2002, vol. 102, no. 11, pp. 4243–4266. Gurav, J.L., Jung, I.K., Park, H.H., Kang, E.S., and Nadargi, D.Y., Silica aerogel: synthesis and applications, J. Nanomater., 2010, vol. 2010, paper 409 310. Moretti, A., Maroni, F., Osada, I., Nobili, F., and Passerini, S., V2O5 aerogel as a versatile cathode material for lithium and sodium batteries, ChemElectroChem, 2015, vol. 2, no. 4, pp. 529–537. Balakhonov, S.V., Vatsadze, S.Z., and Churagulov, B.R., Effect of supercritical drying parameters on the electrochemical properties of vanadium oxide-based aerogels, Inorg. Mater., 2017, vol. 53, no. 2, pp. 181–184. Campbell, L.K., Na, B.K., and Ko, E.I., Synthesis and characterization of titania aerogels, Chem. Mater., 1992, vol. 4, no. 6, pp. 1329–1333. Yao, N., Cao, S., and Yeung, K.L., Mesoporous TiO2–SiO2 aerogels with hierarchal pore structures, Microporous Mesoporous Mater., 2009, vol. 117, no. 3, pp. 570–579. Luo, L., Cooper, A.T., and Fan, M., Preparation and application of nanoglued binary titania–silica aerogel, J. Hazard. Mater., 2009, vol. 161, no. 1, pp. 175–182. Yorov, Kh.E., Sipyagina, N.A., Malkova, A.N., Baranchikov, A.E., Lermontov, S.A., Borilo, L.P., and Ivanov, V.K., Methyl tert-butyl ether as a new solvent for the preparation of SiO2–TiO2 binary aerogels, Inorg. Mater., 2016, vol. 52, no. 2, pp. 163–169. Gavrilov, A.I., Balakhonov, S.V., and Churagulov, B.R., Synthesis and photocatalytic activity of anatase-based aerogels, Inorg. Mater., 2016, vol. 52, no. 12, pp. 1240–1243. Miller, J.B., Rankin, S.E., and Ko, E.I., Strategies in controlling the homogeneity of zirconia–silica aerogels: effect of preparation on textural and catalytic properties, J. Catal., 1994, vol. 148, no. 2, pp. 673–682. Pekala, R.W., Alviso, C.T., Kong, F.M., and Hulsey, S.S., Aerogels derived from multifunctional organic monomers, J. Non-Cryst. Solids, 1992, vol. 145, pp. 90–98. Shea, K.J. and Loy, D.A., Bridged polysilsesquioxanes. Molecular-engineered hybrid organic–inorganic materials, Chem. Mater., 2001, vol. 13, no. 10, pp. 3306–3319. Gui, X., Wei, J., Wang, K., Cao, A., Zhu, H., Jia, Y., and Wu, D., Carbon nanotube sponges, Adv. Mater., 2010, vol. 22, no. 5, pp. 617–621. Worsley, M.A., Pauzauskie, P.J., Olson, T.Y., Biener, J., Satcher, J.H., Jr., and Baumann, T.F., Synthesis of graphene aerogel with high electrical conductivity, J. Am. Chem. Soc., 2010, vol. 132, no. 40, pp. 14067–14069. Mazraeh-shahi, Z.T., Shoushtari, A.M., Abdouss, M., and Bahramian, A.R., Relationship analysis of processing parameters with micro and macro structure of silica aerogel dried at ambient pressure, J. Non-Cryst. Solids, 2013, vol. 376, pp. 30–37. Omranpour, H. and Motahari, S., Effects of processing conditions on silica aerogel during aging: role of solvent, time and temperature, J. Non-Cryst. Solids, 2013, vol. 379, pp. 7–11. Rao, A.V., Bhagat, S.D., Hirashima, H., and Pajonk, G.M., Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor, J. Colloid Interface Sci., 2006, vol. 300, no. 1, pp. 279–285. Zhou, X., Zhong, L., and Xu, Y., Surface modification of silica aerogels with trimethylchlorosilane in the ambient pressure drying, Inorg. Mater., 2008, vol. 44, no. 9, pp. 976–979. Kirkbir, F., Murata, H., Meyers, D., and Chaudhuri, S.R., Drying of aerogels in different solvents between atmospheric and supercritical pressures, J. Non-Cryst. Solids, 1998, vol. 225, pp. 14–18. Yoda, S. and Ohshima, S., Supercritical drying media modification for silica aerogel preparation, J. Non- Cryst. Solids, 1999, vol. 248, no. 2, pp. 224–234. Tajiri, K., Igarashi, K., and Nishio, T., Effects of supercritical drying media on structure and properties of silica aerogel, J. Non-Cryst. Solids, 1995, vol. 186, pp. 83–87. Lermontov, S.A., Straumal, E.A., Mazilkin, A.A., Zverkova, I.I., Baranchikov, A.E., Straumal, B.B., and Ivanov, V.K., How to tune the alumina aerogels structure by the variation of a supercritical solvent. Evolution of the structure during heat treatment, J. Phys. Chem. C, 2016, vol. 120, no. 6, pp. 3319–3325. Wang, S., Raychaudhuri, S., and Sarkar, A., US Patent 5 264 197, 1993. Radulescu, A., Kentzinger, E., Stellbrink, J., Dohmen, L., Alefeld, B., Rücker, U., and Richter, D., KWS-3: the new (very) small-angle neutron scattering instrument based on focusing-mirror optics, Neutron News, 2005, vol. 16, no. 2, pp. 18–21. Goerigk, G. and Varga, Z., Comprehensive upgrade of the high-resolution small-angle neutron scattering instrument KWS-3 at FRM II, J. Appl. Crystallogr., 2011, vol. 44, no. 2, pp. 337–342. Wignall, G.D.T. and Bates, F.S., Absolute calibration of small-angle neutron scattering data, J. Appl. Crystallogr., 1987, vol. 20, no. 1, pp. 28–40. http://www.iff.kfa-juelich.de/~pipich/dokuwiki/doku. php/qtikws. Lermontov, S., Malkova, A., Yurkova, L., Straumal, E., Gubanova, N., Baranchikov, A., Smirnov, M., Tarasov, V., Buznik, V., and Ivanov, V., Hexafluoroisopropyl alcohol as a new solvent for aerogels preparation, J. Supercrit. Fluids, 2014, vol. 89, pp. 28–32. Lermontov, S.A., Malkova, A.N., Sipyagina, N.A., Baranchikov, A.E., Petukhov, D.I., and Ivanov, V.K., Hydrophobicity/hydrophilicity control for SiO2-based aerogels: the role of a supercritical solvent, Russ. J. Inorg. Chem., 2015, vol. 60, no. 10, pp. 1169–1172. Lowell, S., Shields, J.E., Thomas, M.A., and Thommes, M., Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Dordrecht: Kluwer Academic, 2012. Lermontov, S.A., Malkova, A.N., Sipyagina, N.A., Baranchikov, A.E., Petukhov, D.I., and Ivanov, V.K., Hexafluoroacetone: a new solvent for manufacturing SiO2-based aerogels, Russ. J. Inorg. Chem., 2015, vol. 60, no. 5, pp. 541–545. Nanoscale Materials in Chemistry, Klabunde, K.J. and Richards, R.M., Eds., New York: Wiley, 2009, p. 213. Hüsing, N. and Schubert, U., Aerogels—airy materials: chemistry, structure, and properties, Angew. Chem., Int. Ed., 1998, vol. 37, pp. 22–45. Kitahara, S., Dissolution of heat-treated silica gel powders in alcohols at 100° to 250°C, Nippon Kagaku Zasshi, 1969, vol. 90, no. 3, pp. 237–241. Asano, T. and Kitahara, S., The dissolution of heattreated silica gel powders and change of their surface induced by treatment with methanol at 150–250°C, Nippon Kagaku Zasshi, 1970, vol. 91, no. 2, pp. 109–117. Deshpande, R., Hua, D.-W., Smith, D.M., and Brinker, C.J., Pore structure evolution in silica gel during aging/drying. III. Effects of surface tension, J. Non-Cryst. Solids, 1992, vol. 144, pp. 32–44. Bear, J., Dynamics of Fluids in Porous Media, New York: American Elsevier, 1972. Vargaftik, N.B., Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei (Thermophysical Properties of Gases and Liquids: A Handbook), Moscow: Nauka, 1972. Volyak, L.D., Equations for evaluating the surface tension of liquids, Teploenergetika, 1958, no. 7, pp. 33–37. Hybrid organic–inorganic composites, Mark, J.E., Lee, C.Y.-C., and Bianconi, P.A., Eds., Washington DC: American Chemical Society, 1995, pp. 97–111. Beaucage, G., Approximations leading to a unified exponential power-law approach to small-angle scattering, J. Appl. Crystallogr., 1995, vol. 28, pp. 717–728.