Comparative analysis of subgrid drag modifications for dense gas‐particle flows in bubbling fluidized beds

AICHE Journal - Tập 59 Số 11 - Trang 4077-4099 - 2013
Simon Schneiderbauer1,2, Stefan Puttinger1,2, Stefan Pirker1,2
1Christian-Doppler Laboratory for Particulate Flow Modelling, Johannes Kepler University, Altenbergerstr, 69 Linz, Austria
2Dept. of Particulate Flow Modelling, Johannes Kepler University, Altenbergerstr, 69 Linz, Austria

Tóm tắt

Many subgrid drag modifications have been put forth to account for the effect of small unresolved scales on the resolved mesoscales in dense gas‐particle flows. These subgrid drag modifications significantly differ in terms of their dependencies on the void fraction and the particle slip velocity. We, therefore, compare the hydrodynamics of a three‐dimensional bubbling fluidized bed computed on a coarse grid using the drag correlations of the groups of (i) EMMS, (ii) Kuipers, (iii) Sundaresan, (iv) Simonin, and the homogenous drag law of (v) Wen and Yu with fine grid simulations for two different superficial gas velocities. Furthermore, we present an (vi) alternative approach, which distinguishes between resolved and unresolved particle clusters revealing a grid and slip velocity dependent heterogeneity index. Numerical results are analyzed with respect to the time‐averaged solids volume fraction and its standard deviation, gas and solid flow patterns, bubble size, number density, and rise velocities. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4077–4099, 2013

Từ khóa


Tài liệu tham khảo

10.1016/S0961-9534(00)00031-3

10.1016/j.ces.2008.05.045

10.1016/j.ces.2008.11.007

10.1016/j.ces.2011.03.010

10.1016/S0009-2509(99)00565-5

10.1016/S0009-2509(00)00311-0

10.1016/j.powtec.2010.04.002

10.1016/S0009-2509(01)00007-0

10.1021/ie50474a013

10.1021/ie50474a007

10.1002/aic.690010317

10.2172/10145548

10.1016/S0301-9322(96)90004-X

10.1016/S0009-2509(98)00303-0

10.1002/aic.690470510

10.1016/j.powtec.2007.09.010

10.1016/j.ces.2008.07.028

10.1016/j.powtec.2011.07.030

10.1016/j.ces.2005.08.013

10.1002/ceat.200800652

10.1002/cjce.20143

10.1016/j.powtec.2010.09.039

10.1016/j.ces.2012.06.041

Schneiderbauer S, 2012, Proceedings of the 9th WSEAS International Conference on Fluid Mechanics (FLUIDS '12), 150

10.1016/j.partic.2012.05.002

10.1016/j.ces.2009.04.024

10.1016/j.ces.2009.12.004

10.1002/aic.12647

10.1021/ie2007278

10.1016/j.ces.2008.09.028

10.1016/j.powtec.2011.10.052

10.1002/aic.13826

10.1016/j.powtec.2010.06.005

10.1016/S0032-5910(02)00294-2

10.1016/j.powtec.2006.01.020

10.1002/aic.11824

10.1021/ie900247t

10.1002/aic.11481

10.1021/ie200190q

10.1016/j.powtec.2010.12.007

10.1016/j.powtec.2012.04.006

Schneiderbauer S, 2012, Proceedings of the 9th International Conference on CFD in the Minerals and Process Industries

10.1016/0032-5910(94)02935-H

10.1016/S0009-2509(98)00129-8

10.1017/S0022112001005663

10.1016/S0301-9322(02)00005-8

10.1021/ie0492193

MilioliCC MilioliFE.The Sub‐grid Hydrodynamic Behavior of Accelerating Gas‐solid Flows. In: Sinclair Curtis J Balachandar S editors. Proceedings of the 7th International Conference on Multiphase Flow Tampa Florida: University of Florida 2010;9.

10.1016/j.apm.2009.06.010

LiJ KwaukM.Particle‐Fluid Two‐Phase Flow: The Energy‐Minimization Multi‐Scale Method.Beijing China:Metallurgical Industry Press 1994.

10.1016/S0009-2509(01)00318-9

10.1016/j.cej.2003.08.006

10.1016/j.ces.2006.08.017

10.1016/j.ces.2007.11.023

10.1016/j.ces.2010.03.053

10.1016/j.ces.2010.03.054

10.1016/j.ces.2012.03.022

10.1016/j.ces.2011.07.020

ÖzelA ParmentierJF SimoninO FedeP.A priori test of effective drag modeling for filtered two‐fluid model simulation of circulating and dense gas‐solid fluidized beds. In: Sinclair Curtis J Balachandar S editors. Proceedings of the 7th International Conference on Multiphase Flow Tampa Florida:2010;7.

10.1002/aic.12486

Werther J, 1994, Expansion behavior of gas fluidized bed in the turbulent regime, AIChE Symp Ser., 90, 31

10.1016/j.ces.2006.04.009

10.1002/aic.12375

10.1103/PhysRevE.72.021309

10.1038/nature04801

10.1088/1742-5468/2006/07/P07020

10.1146/annurev.fluid.40.111406.102142

10.1063/1.857955

10.1063/1.858280

10.1021/ie900658k

10.1021/ie049773c

10.1021/i160024a007

Ishii M, 1975, Thermo‐fluid dynamic theory of two‐phase flow. Collection de la Direction des Etudes et recherches d'Electricité de France

10.1016/j.cej.2003.08.025

Chapman S, 1970, The Mathematical Theory of Non‐uniform Gases

10.1017/S0022112084000586

10.1017/CBO9780511611513

10.1016/j.cej.2008.11.010

10.1146/annurev.fluid.40.111406.102130

Wen CY, 1966, Mechanics of fluidization, Chem Eng Prog Symp Series., 62, 100

10.1016/0032-5910(93)02786-A

10.1016/0032-5910(95)02985-B

10.1002/cjce.5450730508

10.1016/S0032-5910(97)03349-4

10.1016/S0009-2509(99)00021-4

10.1016/S1672-2515(07)60033-5

10.1016/j.cej.2005.06.002

10.1016/j.ces.2006.04.006

10.1016/j.ces.2005.05.063

10.1016/j.ces.2005.11.050

10.1016/j.ces.2006.10.010

10.1016/j.ces.2006.12.071

10.1016/j.ces.2005.07.002

10.1016/j.partic.2008.07.013

Richardson JF, 1954, Sedimentation and Fluidization, Trans Inst Chem Eng., 32, 35

10.1016/j.partic.2008.07.005

10.1017/S0022112087000570

10.1016/j.ijmultiphaseflow.2012.03.006

10.1002/aic.12728

10.1016/j.powtec.2005.04.002

10.1016/S0032-5910(00)00246-1

10.1016/S1385-8947(01)00299-6

Gu WK, 1998, Fluidization IX, 501

10.1016/S0032-5910(02)00114-6

10.1016/j.ces.2011.02.055

10.1103/PhysRevE.85.021305

10.1016/j.cej.2007.11.015

10.1002/cjce.20054

Werther J, 1978, Effect of gas distributor on the hydrodynamics of gas fluidized beds, Ger Chem Eng., 1, 166

10.1016/0032-5910(94)02873-7

Hilligardt K, 1986, Local bubble gas hold‐up and expansion of gas/solid fluidized beds, Ger Chem Eng., 9, 215

Botterill JSM, 1966, Bubble chains in gas fluidized beds, Chem Eng Prog Symp Ser., 62, 7

Kehoe PWK, 1971, Continuously Slugging Fluidised Beds, Inst Chem Eng Symp Ser., 33, 97

10.1002/aic.14130

10.1016/S0032-5910(02)00132-8

10.1016/j.ces.2005.01.027

Laverman JA, 2010, On the Hydrodynamics in Gas Polymerization Reactors

10.1115/1.2899416

10.1063/1.868178

10.1063/1.869396

10.1103/PhysRevE.58.2161

10.1016/S0301-9322(99)00047-6

10.1103/PhysRevLett.96.118002

10.1103/PhysRevE.79.031304