Phân tích so sánh toàn bộ transcriptome của hạt đang phát triển tiết lộ các gen và con đường tiềm năng cải thiện GPC trong các dòng lúa mì có nguồn gốc từ lúa mì hoang dã

Journal of Applied Genetics - Tập 62 - Trang 17-25 - 2020
Fangyi Gong1, Lin Huang1, Tiangang Qi1, Guan Tang1, Jia Liu1, Lan Xiang1, Jingshu He1, Youliang Zheng1,2, Dengcai Liu1,2, Bihua Wu1,2
1State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
2Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Chengdu, China

Tóm tắt

Nội dung protein hạt (GPC) trong lúa mì hiện đại vốn dĩ thấp. Quần thể gen của lúa mì hoang dã (Triticum turgidum ssp. dicoccoides, 2n = 4x = 28, AABB) chứa nhiều biến thể kiểu gen khác nhau về GPC. Tuy nhiên, việc định danh các gen ứng cử viên liên quan đến GPC cao là một thách thức do tính chất phức tạp của đặc tính này. Trong nghiên cứu hiện tại, chúng tôi đã thực hiện phân tích RNA-seq trên các hạt đang phát triển của kiểu gen lúa mì hoang dã D1, lúa mì phổ biến CN16 và tổ hợp lai hexaploid rộng BAd107-4 với GPC trái ngược nhau. Chúng tôi đã phát hiện tổng cộng 39.795 gen được biểu hiện trên các nhiễm sắc thể A và B, trong đó 24.152 gen được chia sẻ giữa D1, CN16 và BAd107-4. Từ 1.744 gen được biểu hiện khác nhau (DEGs), có 1.203 gen giảm biểu hiện và 541 gen tăng biểu hiện trong nhóm GPC cao (D1+BAd107-4) khi so với nhóm GPC thấp (CN16). Phần lớn các DEGs liên quan đến quá trình xử lý protein trong lưới nội bào, chuyển hóa tinh bột và đường, chuyển hóa galactose và các con đường xuất protein. Mức độ biểu hiện của chín gen được chọn ngẫu nhiên đã được xác thực bởi qRT-PCR, phù hợp với dữ liệu transcriptome. Cơ sở dữ liệu hiện tại sẽ giúp chúng tôi hiểu các mạng lưới điều hòa tiềm năng liên quan đến sự tích lũy protein trong hạt lúa mì và cung cấp nền tảng cho việc cải thiện đồng thời nội dung protein trong hạt và năng suất trong các chương trình nhân giống lúa mì.

Từ khóa

#Nội dung protein hạt #GPC #lúa mì hoang dã #phân tích RNA-seq #biểu hiện gen.

Tài liệu tham khảo

Anders S, Huber W (2012) Differential expression of RNA-Seq data at the gene level-the DESeq package. European Molecular Biology Laboratory, Heidelberg Anders S, Pyl PT, Huber W (2015) HTSeq--a python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169 Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30:2114–2120 Brevis JC, Morris CF, Manthey F, Dubcovsky J (2010) Effect of the grain protein content locus Gpc-B1 on bread and pasta quality. J Cereal Sci 51:357–365 Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification. Plant Soil 302:1–17 Caplan MJ, Rosenzweig SA, Jamieson JD (1987) Processing and sorting of proteins synthesized in the endoplasmic reticulum. Membrane Physiol 1987:273–281 Chen XY, Song GQ, Zhang SJ (2017) The allelic distribution and variation analysis of the NAM-B1 gene in Chinese wheat cultivars. J Integr Agric 16:1294–1303 Chong LP, Wang Y, Gad N, Anderson N, Shah B, Zhao R (2015) A highly charged region in the middle domain of plant endoplasmic reticulum (ER)-localized heat-shock protein 90 is required for resistance to tunicamycin or high calcium-induced ER stresses. J Exp Bot 66:113–124 D’Arcangelo JG, Stahmer KR, Miller EA (2013) Vesicle-mediated export from the ER: COPII coat function and regulation. Biochim Biophys Acta 1833:2464–2472 Dupont FM, Hurkman WJ, Tanaka CK (1998) BiP, HSP70, NDK and PDI in wheat endosperm. I. Accumulation of mRNA and protein during grain development. Physiol Plant 103:70–79 Ellgaard L, Sevier CS, Bulleid NJ (2018) How are proteins reduced in the endoplasmic reticulum. Trends Biochem Sci 43:32–43 Fahima T, Sun GL, Beharav A, Krugman T, Beiles A, Nevo E (1999) RAPD polymorphism of wild emmer wheat populations, Triticum dicoccoides, in Israel. Theor Appl Genet 98:434–447 Furtado A, Bundock PC, Banks PM, Fox G, Yin X, Henry RJ (2015) A novel highly differentially expressed gene in wheat endosperm associated with bread quality. Sci Rep 5:10446 Gauss R, Kanehara K, Carvalho P, Ng DT, Aebi M (2011) A complex of Pdi1p and the mannosidase Htm1p initiates clearance of unfolded glycoproteins from the endoplasmic reticulum. Mol Cell 42:782–793 Gonzalez-Hernandez JL, Elias EM, Kianian SF (2004) Mapping genes for grain protein concentration and grain yield on chromosome 5B of Triticum turgidum (L.) var. dicoccoides. Euphytica 139:217–225 Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–274 Hung JH, Weng Z (2016) Designing polymerase chain reaction primers using Primer3Plus. Cold Spring Harbor Protocols Joppa LR, Du CH, Hart GE, Hareland GA (1997) Mapping genes for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbred chromosome lines. Crop Sci 37:1586–1589 Jukanti AK, Fischer AM (2008) A high-grain protein content locus on barley (Hordeum vulgare) chromosome 6 is associated with increased flag leaf proteolysis and nitrogen remobilization. Plant Physiol 132:426–439 Kovacs MIP, Howes NK, Clarke JM, Leisle D (1998) Quality characteristics of durum wheat lines deriving high protein from a Triticum dicoccoides (6B) substitution. J Cereal Sci 27:47–51 Kushnir U, Halloran GM (1984) Transfer of high kernel weight and high protein from wilk tetraploid wheat (Triticum turgidum dicoccoides) to bread wheat (Triticum aestivum) using homologous and homoeologous recombination. Euphytica 33:249–255 Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359 Lantican MA, Braun HJ, Payne TS, Singh RP, Sonder K, Baum M, van Ginkel M, Erenstein O (2016) Impacts of international wheat improvement research 1994-2014. CIMMYT, Mexico Liu J, Huang L, Wang CQ, Liu YX, Yan ZH, Wang ZZ, Xiang L, Zhong XY, Gong FY, Zheng YL, Liu DC, Wu BH (2019) Genome-wide association study reveals novel genomic regions associated with high grain protein content in wheat lines derived from wild emmer wheat. Front Plant Sci 10:464 Mao X, Cai T, Olyarchuk JG, Wei L (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21:3787–3793 Muthusamy SK, Dalal M, Chinnusamy V, Bansal KC (2017) Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat. J Plant Physiol 211:100–113 Nevo E, Korol AB, Beiles A, Fahima T (2002) Evolution of wild emmer and wheat improvement. Population genetics, genetic resources, and genome organization of wheat’s progenitor, Triticum dicoccoides. Springer Berlin Heidelberg Pandey B, Kaur A, Gupta OP, Sharma I, Sharma P (2015) Identification of Hsp20 gene family in wheat and barley and their differential expression profiling under heat stress. Appl Biochem Biotechnol 175:2427–2446 Peleg Z, Saranga Y, Yazici A, Fahima T, Ozturk L, Cakmak I (2008) Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant Soil 306:57–67 Peleg Z, Cakmak I, Ozturk L, Yazici A, Jun Y, Budak H (2009) Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population. Theor Appl Genet 119:353–369 Rangan P, Furtado A, Henry RJ (2017) The transcriptome of the developing grain: a resource for understanding seed development and the molecular control of the functional and nutritional properties of wheat. BMC Genomics 18:766 Sano H, Youssefian S (1994) Light and nutritional regulation of transcripts encoding a wheat protein kinase homolog is mediated by cytokinins. Proc Natl Acad Sci 91:2582–2586 Schmittgen TD (2002) Real-time quantitative PCR. Methods 25:383–385 Strasser R (2018) Protein quality control in the endoplasmic reticulum of plants. Annu Rev Plant Biol 69:147–172 Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111 Uauy C, Brevis JC, Dubcovsky J (2006a) The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. J Exp Bot 57:2785–2794 Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006b) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301 Wang ZZ, Huang L, Wu BH, Hu JL, Jiang ZL, Qi PF, Zheng YL, Liu DC (2018) Characterization of an integrated active Glu-1Ay allele in common wheat from wild emmer and its potential role in flour improvement. Int J Mol Sci 19:923 Ye J, Coulouris G, Zaretskaya I, Cutcutache L, Rozen S, Madden T (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134–134 Yu Z, Islam S, She M, Diepeveen D, Zhang Y, Tang G (2018) Wheat grain protein accumulation and polymerization mechanisms driven by nitrogen fertilization. Plant J 96:1160–1177 Yuen CYL, Wong K, Christopher DA (2016) Phylogenetic characterization and promoter expressionanalysis of a novel hybrid protein disulfide isomerase/cargo receptor subfamily unique toplants andchromalveolates. Mol Gen Genomics 291:455–469 Zadoks JC (1974) Teaching botanical epidemiology at the Agricultural University, Wageningen. Eur J Plant Pathol 80:154–164 Zhang LQ, Yang Y, Zheng YL, Liu DC (2007) Meiotic restriction in emmer wheat is controlled by one or more nuclear genes that continue to function in derived lines. Sex Plant Reprod 20:159–166