Comparative analysis among Asia–Pacific geoid models stored at the ISG repository
Tóm tắt
Geoid models have important applications in geosciences as well as engineering, for example, for the conversion from ellipsoidal heights observed by GNSS techniques to orthometric heights. To meet the user’s demands, the International Service for the Geoid (ISG,
https://www.isgeoid.polimi.it/
) provides access to a repository of local, regional, and continental geoid models through its website. Among hundreds of worldwide models, there are many covering countries in the Asia–Pacific area. The focus of this study is about this region, performing a series of analyses to assess the geoid models stored in the ISG repository through some relative comparisons. In particular, three kinds of analyses are performed with the purpose of: (a) investigating the evolution in time of a geoid series referring to the same country, (b) comparing the information provided by local and regional geoid models on overlapped areas, and (c) assessing the agreement between local and global models. These analyses are firstly performed on sample models, providing a detailed description, and then applied to all Asia–Pacific geoid models currently stored in the ISG repository, providing summary statistics.
Tài liệu tham khảo
Barzaghi R, Carrion D, Koç Ö (2020a) The PoliMI quasi-geoid based on windowed Least-Squares Collocation for the Colorado Experiment: ColWLSC2020. GFZ Data Services. https://doi.org/10.5880/isg.2020.001
Denker H (2013) Regional gravity field modeling: theory and practical results. In: Xu G (ed) Sciences of geodesy—II. Springer, Berlin, pp 185–191. https://doi.org/10.1007/978-3-642-28000-9_5
Drinkwater MR, Floberghagen R, Haagmans R, Muzi D, Popescu A (2003) GOCE: ESA’s first Earth Explorer Core mission. In: Beutler GB, Drinkwater MR, Rummel R, von Steiger R (eds) Earth Gravity Field from Space—from Sensors to Earth Sciences, in the Space Sciences Series of ISSI, vol 18. Kluwer Academic Publishers, Dordrecht, pp 419–432. https://doi.org/10.1007/978-94-017-1333-7_36
Duquenne H (2006) A data set to test geoid computation methods. Proceedings of the 1st International Symposium of the International Gravity Field Service, Istanbul, Turkey, Harita Dergisi, pp. 61–65
Forsberg R (1984) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling, Reports of the Dep. of Geod. Science and Surveying No 355, OSU, Columbus, Ohio
Forsberg R, Olesen AV, Gatchalian R, Cal Ortiz CC (2014) Geoid model of the Philippines from airborne and surface gravity, Report of National Mapping and Resource Information Authority (NAMRIA), Dept. of Environmental and Natural Resources, Republic of The Philippines
Förste C, Bruinsma SL, Abrikosov O, Lemoine JM, Marty JC, Flechtner F, Balmino G, Barthelmes F, Biancale R (2014) EIGEN-6C4: the latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse, GFZ Data Services, https://doi.org/10.5880/ICGEM.2015.1
Gatchalian R, Forsberg R, and Olesen A (2016) PGM2016: a new geoid model for the Philippines, Report of National Mapping and Resource Information Authority (NAMRIA), Dept. of Environmental and Natural Resources, Republic of The Philippines
Hwang C, Hsu HJ, Featherstone WE, Cheng CC, Yang M, Huang W, Wang CY, Huang JF, Chen KH, Huang CH, Chen H, Su WY (2020) New gravimetric-only and hybrid geoid models of Taiwan for height 5 modernisation, cross-island datum connection and airborne LiDAR mapping. J Geodesy 94:83. https://doi.org/10.1007/s00190-020-01412-5
Ince ES, Barthelmes F, Reißland S, Elger K, Förste C, Flechtner F, Schuh H (2019) ICGEM—15 years of successful collection and distribution of global gravitational models, associated services and future plans. Earth Syst Sci Data 11(2):647–674. https://doi.org/10.5194/essd-11-647-2019
Kadir MA, Fashir HH, Omar K (1999) A regional gravimetric co-geoid over South East Asia. Geomat Res Australas 71:37–56
Kostelecky J, Klokocník J, Bucha B, Bezdek A, Förste C (2015) Evaluation of gravity field model EIGEN-6C4 by means of various functions of gravity potential and by GNSS/levelling. Geoinformatics FCE CTU 14(1):7–28. https://doi.org/10.14311/gi.14.1.1
Lemoine, FG, Kenyon, SC, Factor, JK, Trimmer, RG, Pavlis, NK, Chinn, DS, Cox, CM, Klosko, SM, Luthcke, SB, Torrence, MH, Wang, YM, Williamson, RG, Pavlis, EC, Rapp, RH, Olson, TR (1998) The Development of the Joint NASA GSFC and the National IMagery and Mapping Agency (NIMA) Geopotential Model EGM96; Greenbelt, Maryland, USA: National Aeronautics and Space Administration, Goddard Space Flight Center
Lyszkowicz A, Birylo M, Becek K (2014) A new geoid for Brunei Darussalam by the collocation method. Geodesy Cartography 63(2):183–198. https://doi.org/10.2478/geocart-2014-0013
Medvedev P, Nepoklonov V (2003) RGQG-2003: the new geoid and gravity field model for territory of Russia and sea areas around Russia. Presented at IUGG 2003, June 30–July 11, 2003, Sapporo, Japan. Abstracts Week B, P. 169
Moritz H (1980) Advanced physical geodesy. Wichmann, Karlsruhe. https://doi.org/10.1029/EO063i021p00514-03
Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh WD, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansò F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geodesy. https://doi.org/10.1007/s00190-011-0467-x
Pavlis NK (2013) Global gravitational models. In: Sansò F, Sideris M (eds) Geoid determination. Lecture notes in earth system sciences, vol 110. Springer, Heidelberg. https://doi.org/10.1007/978-3-540-74700-0_6
Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res Solid Earth 117:B04406. https://doi.org/10.1029/2011JB008916
Reguzzoni M, Carrion D, De Gaetani CI, Albertella A, Rossi L, Sona G, Batsukh K, Toro Herrera JF, Elger K, Barzaghi R, Sansò F (2021) Open access to regional geoid models: the International Service for the Geoid. Earth Syst Sci Data 13(4):1653–1666. https://doi.org/10.5194/essd-13-1653-2021
Roman DR, Wang YM, Henning W, Hamilton J (2004) Assessment of the new national geoid height model, GEOID03. Surv Land Inf Sci 64(3):153–162
Shen WB, Han J (2013) Improved geoid determination based on the shallow-layer method: a case study using EGM08 and CRUST2.0 in the Xinjiang and Tibetan regions. Terr Atmos Ocean Sci 24(4):591–604. https://doi.org/10.3319/TAO.2012.11.12.01(TibXS)
Sideris MG (2013) Geoid determination by FFT techniques. In: Sansò F, Sideris M (eds) Geoid determination. Lecture notes in earth system sciences, vol 110. Springer, Berlin. https://doi.org/10.1007/978-3-540-74700-0_10
Stokes GG (1849) On the variation of gravity on the surface of the Earth. Trans Camb Phil Soc 8:672–695
Tscherning CC (2013) Geoid determination by 3D least-squares collocation. In: Sansò F, Sideris M (eds) Geoid determination. Lecture notes in earth system sciences, vol 110. Springer, Berlin. https://doi.org/10.1007/978-3-540-74700-0_7
Wang YM, Sánchez L, Ågren J, Huang J, Forsberg R, Abd-Elmotaal HA, Ahlgren K, Barzaghi R, Bašić T, Carrion D, Claessens S, Erol B, Erol S, Filmer M, Grigoriadis VN, Isik MS, Jiang T, Koç O, Krcmaric J, Li X, Liu Q, Matsuo K, Natsiopoulos DA, Novák P, Pail R, Pitoňák M, Schmidt M, Varga M, Vergos GS, Véronneau M, Willberg M, Zingerle P (2021) Colorado geoid computation experiment: overview and summary. J Geodesy. https://doi.org/10.1007/s00190-021-01567-9
Wong L, Gore R (1969) Accuracy of geoid heights from modified Stokes kernels. Geophys J Roy Astron Soc 18:81–91. https://doi.org/10.1111/j.1365-246X.1969.tb00264.x