Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
So sánh Hồ sơ Biểu hiện Phiên mã của các Gen Phát triển Trichome của Đậu nành dưới Stress Muối
Tóm tắt
Mục tiêu của nghiên cứu này là xác định sự thay đổi cấu trúc siêu vi và sự điều chỉnh của các gen liên quan đến chuyển hóa trichome dưới áp lực muối ở cây đậu nành (Glycine max L. Merr.). Các cây giống đậu nành Ataem-7 và S04-05 ở giai đoạn 14 ngày tuổi đã được xử lý với các nồng độ NaCl là 0, 50, 100 và 150 mM. Trong khi lượng diệp lục bị giảm, hoạt động của guaiacol peroxidase tăng lên ở cả hai giống do nồng độ NaCl tăng. Ở giống đậu nành S04-05, mật độ trichome gia tăng trên cả hai bề mặt lá, trong khi đó, mật độ trichome giảm ở giống Ataem-7 khi điều trị với 150 mM NaCl. Mật độ khí khổng gia tăng trên cả hai bề mặt lá của cả hai giống đậu nành sau khi chịu áp lực muối. Chúng tôi cũng đã thực hiện phân tích qRT-PCR để đánh giá mức độ phiên mã tương đối của các gen tương đồng với gen phát triển trichome ở Arabidopsis. Phân tích qRT-PCR cho thấy sự kích thích của các gen tương đồng GL2 và GL3 ở cây đậu nành sau khi điều trị với 50, 100 và 150 mM NaCl trong cả hai giống. Mặc dù mức độ biểu hiện của gen tương đồng TTG1 bị ảnh hưởng tiêu cực ở cả hai giống đậu nành dưới các nồng độ muối khác nhau, hồ sơ biểu hiện gen tương đồng GL1 lại khác nhau phụ thuộc vào việc thay đổi nồng độ muối ở cả hai giống so với cây đối chứng. Có thể nhận thấy rằng sự điều chỉnh hình thành trichome khác nhau giữa hai giống đậu nành.
Từ khóa
#Đậu nành #trichome #áp lực muối #gen phát triển #qRT-PCRTài liệu tham khảo
Abbruzzese G, Beritognolo I, Muleo R, Piazzai M, Sabatti M, Scarascia Mugnozza G, Kuzminsky E (2009) Leaf morphological plasticity and stomatal conductance in three Populus alba L. genotypes subjected to salt stress. Environ Exp Bot 66(3):381–388. https://doi.org/10.1016/j.envexpbot.2009.04.008
Adebooye OC, Hunsche M, Noga G, Lankes C (2012) Morphology and density of trichomes and stomata of Trichosanthes cucumerina (Cucurbitaceae) as affected by leaf age and salinity. Turk J Bot 36:328–335
Ambawat S, Sharma P, Yadav NR, Yadav RC (2013) MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants 19(3):307–321. https://doi.org/10.1007/s12298-013-0179-1
Arnon DI (1949) Copper enzymes in isolated chloroplasts, polyphenoxidase in Beta vulgaris. Plant Physiology 24:1–15
Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora-Morphology Distrib Funct Ecol Plants 199(5):361–376. https://doi.org/10.1078/0367-2530-00165
Azevedo Neto AD, Prisco JT, Enéas-Filho J, Lacerda CF, Silva JV, Costa PHA, Gomes-Filho E (2004) Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes. Braz J Plant Physiol 16(1):31–38. https://doi.org/10.1590/S1677-04202004000100005
Azevedo Neto AD, Prisco JT, Enéas-Filho J, Abreu CEB, Gomes-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 56(1):87–94. https://doi.org/10.1016/j.envexpbot.2005.01.008
Babaeian M, Abolfazl T, Ghanbari A, Esmaeilian Y, Fahimifard M (2011) Effects of foliar micronutrient application on osmotic adjustments, grain yield and yield components in sunflower (Alstar cultivar) under water stress at three stages. Afr J Agric Res 6:1204–1208. https://doi.org/10.5897/AJAR10.928
Bañon S, Fernandez JA, Franco JA, Torrecillas A, Alarcón JJ, Sánchez-Blanco MJ (2004) Effects of water stress and night temperature preconditioning on water relations and morphological and anatomical changes of Lotus creticus plants. Sci Hortic 101(3):333–342. https://doi.org/10.1016/j.scienta.2003.11.007
Bansal R, Mittapelly P, Cassone BJ, Mamidala P, Redinbaugh MG, Michel A (2015) recommended reference genes for quantitative PCR analysis in soybean have variable stabilities during diverse biotic stresses. PLoS ONE 10(8):e0134890. https://doi.org/10.1371/journal.pone.0134890
Botti C, Palzkill D, Muñoz D, Prat L (1998) Morphological and anatomical characterization of six jojoba clones at saline and non-saline sites. Ind Crop Prod 9(1):53–62. https://doi.org/10.1016/S0926-6690(98)00014-4
Çelik O, Ünsal SG (2013) Expression Analysis of Proline Metabolism-Related Genes in Salt-Tolerant Soybean Mutant Plants. Plant Omics Journal, 6:364–370
Celik O, Atak C, Suludere Z (2014) Response of soybean plants to gamma radiation: biochemical analyses and expression patterns of trichome development. Plant Omics 7:382–391
Chen X, Chen Z, Zhao H, Zhao Y, Cheng B, Xiang Y (2014) Genome-wide analysis of soybean HD-zip gene family and expression profiling under salinity and drought treatments. PLoS One 9:87156–87173
Cheong M, Yun DJ (2007) Salt-stress signaling. J Plant Biol 50(2):148–155. https://doi.org/10.1007/BF03030623
Digiuni S, Schellmann S, Geier F, Greese B, Pesch M, Wester K, Dartan B, Mach V, Srinivas BP, Timmer J, Fleck C, Hulskamp M (2008) A competitive complex formation mechanism underlies trichome patterning on Arabidopsis leaves. Mol Sys Biol 4:217–228. https://doi.org/10.1038/msb.2008.54
Duncan DB (1955) Multiple range and multiple F tests. Biometr 11(1):1–42. https://doi.org/10.2307/3001478
Ekanayaka EAP, Li C, Jones AD (2014) Sesquiterpenoid glycosides from glandular trichomes of the wild tomato relative Solanum habrochaites. Phytochemistry 98:223–231. https://doi.org/10.1016/j.phytochem.2013.11.011
Feng L, Luan X, Sheng L (2016) A review on epidermal hair and it's breeding project in plants. J Pharm Chem Biol Sci 3:469–476
Fraser CM, Chapple C (2011) The phenylpropanoid pathway in Arabidopsis. Arabidopsis Book 9:152–171
Gao Y, Gong X, Cao W, Zhao J, Fu L, Wang X, Schumaker KS, Guo Y (2008) SAD2 in Arabidopsis functions in trichome initiation through mediating GL3 function and regulating GL1, TTG1 and GL2 expression. J Integr Plant Biol 50(7):906–917. https://doi.org/10.1111/j.1744-7909.2008.00695.x
Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53(5):814–827. https://doi.org/10.1111/j.1365-313X.2007.03373.x
Gutschick VP (1999) Biotic and abiotic consequences of differences in leaf structure. New Phytol 143(1):3–18. https://doi.org/10.1046/j.1469-8137.1999.00423.x
Hameed M, Ashraf M, Naz N (2011) Anatomical and physiological characteristics relating to ionic relations in some salt tolerant grasses from the salt range, Pakistan. Acta Physiol Plant 33(4):1399–1409. https://doi.org/10.1007/s11738-010-0674-8
Harada E, Kim JA, Meyer AJ, Hell R, Clemens S, Choi YE (2010) Expression profiling of tobacco leaf trichomes identifies genes for biotic and abiotic stresses. Plant Cell Physiol 51(10):1627–1637. https://doi.org/10.1093/pcp/pcq118
Hassan N, Serag M, El-Feky F (2004) Changes in nitrogen content and protein profiles following in vitro selection of NaCl resistant mung bean and tomato. Acta Physiol Plant 26(2):165–175. https://doi.org/10.1007/s11738-004-0006-y
Hauser M-T, Harr B, Schlötterer C (2001) Trichome distribution in Arabidopsis thaliana and its close relative Arabidopsis lyrata: molecular analysis of the candidate gene GLABROUS1. Mol Biol Evol 18(9):1754–1763. https://doi.org/10.1093/oxfordjournals.molbev.a003963
Hernández JA, Jiménez A, Mullineaux P, Sevilia F (2000) Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell Environ 23(8):853–862. https://doi.org/10.1046/j.1365-3040.2000.00602.x
Hossain Z, Mandal AKA, Datta SK, Biswas AK (2006) Isolation of a NaCl-tolerant mutant of Chrysanthemum morifolium by gamma radiation: in vitro mutagenesis and selection by salt stress. Funct Plant Biol 33(1):91–101. https://doi.org/10.1071/FP05149
Hunt M, Kaur N, Stromvik M, et al. (2011) BMC Plant Biol 11:145. https://doi.org/10.1186/1471-2229-11-145
Huttunen P, Kärkkäinen K, Løe G, Rautio P, Ågren J (2010) Leaf Trichome production and responses to defoliation and drought in Arabidopsis lyrata (Brassicaceae). Ann Bot Fenn 47(3):199–207. https://doi.org/10.5735/085.047.0304
Kirik V, Lee MM, Wester K, Herrmann U, Zheng Z, Oppenheimer D, Schiefelbein J, Hulskamp M (2005) Functional diversification of MYB23 and GL1 genes in trichome morphogenesis and initiation. Dev 132(7):1477–1485. https://doi.org/10.1242/dev.01708
Koca H, Bor M, Ozdemir F, Turkan I (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60(3):344–351. https://doi.org/10.1016/j.envexpbot.2006.12.005
Lillo C, Lea US, Ruoff P (2008) Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway. Plant Cell Environ 31(5):587–601. https://doi.org/10.1111/j.1365-3040.2007.01748.x
Ma S, Niu H, Liu C, Zhang J, Hou C, Wang D (2013) Expression stabilities of candidate reference genes for RT-qPCR under different stress conditions in soybean. PLoS One 8:75271–75286
Manchanda G, Garg N (2008) Salinity and its effects on the functional biology of legumes. Acta Physiol Plant 30(5):595–618. https://doi.org/10.1007/s11738-008-0173-3
Marks MD (1997) Molecular genetic analysis of trichome development in Arabidopsis. Ann Rev Plant Physiol Plant Mol Biol 48(1):137–163. https://doi.org/10.1146/annurev.arplant.48.1.137
Masucci JD, Rerie WG, Foreman DR, Zhang M, Galway ME, Marks MD, Schiefelbein JW (1996) The homeobox gene GLABRA2 is required for position-dependent cell differentiation in the root epidermis of Arabidopsis thaliana. Dev 122:1253–1260
Miranda VJ, Coelho RR, Viana AAB, Neto OB, Carneiro RMDG, Rocha TL, Sa MFG, Fragoso RRF (2013) Validation of reference genes aiming accurate normalization of qPCR data in soybean upon nematode parasitism and insect attack. BMC Research Notes 6:196
Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–250. https://doi.org/10.1046/j.0016-8025.2001.00808.x
O'neal ME, Landis DA, Isaacs R (2002) An inexpensive, accurate method for measuring leaf area and defoliation through digital image analysis. J. Econ. Entomol. 95(6):1190–1194
Payne CT, Zhang F, Lloyd AM (2000) GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genet 156:1349–1362
Pfaffl MW, Gerstmayer B, Bosio A,Windischc W (2003) Effect of zinc deficiency on the mRNA expression pattern in liver and jejunum of adult rats: monitoring gene expression using cDNA microarrays combined with real-time RT-PCR. The journal of Nutritional Biochemistry 14(12):691–702
Reinprecht Y, Yadegari Z, Perry GE, Siddiqua M, Wright LC, McClean PE, Pauls P (2013) In silico comparison of genomic regions containing genes coding for enzymes and transcription factors for the phenylpropanoid pathway in Phaseolus vulgaris L. and Glycine max L. Merr. Front Plant Sci 4:317–342
Rerie WG, Feldmann KA, Marks MD (1994) The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in Arabidopsis. Genes Dev 8(12):1388–1399. https://doi.org/10.1101/gad.8.12.1388
Rossi L, Borghi M, Francini A, Lin X, Xie AY, Sebastiani L (2016) Salt stress induces differential regulation of phenylpropanoid pathway in Olea euoropaea cultivars Frantoia (salt-tolerant) and Leccino (salt-sensitive). J Plant Physiol 204:8–15. https://doi.org/10.1016/j.jplph.2016.07.014
Roy, Stanton, Eppley (1999) Effects of environmental stress on leaf hair density and consequences for selection. J Evol Biol 12(6):1089–1103. https://doi.org/10.1046/j.1420-9101.1999.00107.x
Scebba F, Arduini I, Ercoli L, et al. (2006) Biol Plant 50:688. https://doi.org/10.1007/s10535-006-0107-0
Silva EC, Nogueira RJMC, Araújo FP, Melo NF, Azevedo Neto AD (2008) Physiological responses to salt stress in young umbu plants. Environ Exp Bot 63(1-3):147–157. https://doi.org/10.1016/j.envexpbot.2007.11.010
Steduto P, Albrizio R, Giorio P, Sorrentino G (2000) Gas-exchange response and stomatal and non-stomatal limitations to carbon assimilation of sunflower under salinity. Environ Exp Bot 44(3):243–255. https://doi.org/10.1016/S0098-8472(00)00071-X
Szymanski DB, Marks MD (1998) GLABROUS1 overexpression and TRIPTYCHON Alter the cell cycle and Trichome cell fate in Arabidopsis. Plant Cell 10(12):2047–2062. https://doi.org/10.1105/tpc.10.12.2047
Tuteja N (2007) Mechanisms of high salinity tolerance in plants. In: Dieter H, Helmut S (eds) Methods in enzymology, vol vol 428. Academic Press, Cambridge, pp 419–438
Wang Y, Frei M (2011) Stressed food—the impact of abiotic environmental stresses on crop quality. Agric Ecosyst Environ 141(3-4):271–286. https://doi.org/10.1016/j.agee.2011.03.017
Xiao K, Mao X, Lin Y, Xu H, Zhu Y, Cai Q, Xie H, Zhang J (2017) Trichome, a functional diversity pheotype in plant. Mol Biol 6:183–189. https://doi.org/10.4172/2168-9547.1000183
Yan L, Guizhu C (2007) Physiological Adaptability of Three Mangrove Species to Salt Stress. Acta Ecologica Sinica, 27, 2208–2214. https://doi.org/10.1016/S1872-2032(07)60052-3
Zhang F, Gonzalez A, Zhao M, Payne CT, Lloyd A (2003) A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Dev 130(20):4859–4869. https://doi.org/10.1242/dev.00681
Zushi K, Matsuzoe N, Kitano M (2009) Developmental and tissue-specific changes in oxidative parameters and antioxidant systems in tomato fruits grown under salt stress. Sci Hortic 122(3):362–368. https://doi.org/10.1016/j.scienta.2009.06.001