Comparative Study of hydroxyapatite prepared from seashells and eggshells as a bone graft material
Tóm tắt
Từ khóa
Tài liệu tham khảo
SS Wallace, SJ Froum, Effect of maxillary sinus augmentation on the survival of endosseous dental implants. A systematic review, Ann Periodontol, 8, 328 (2003).
BE Pjetursson, WC Tan, M Zwahlen, et al., A systematic review of the success of sinus floor elevation and survival of implants inserted in combination with sinus floor elevation, J Clin Periodontol, 35, 216 (2008).
JM Ten Heggeler, DE Slot, GA Van der Weijden, Effect of socket preservation therapies following tooth extraction in non-molar regions in humans: a systematic review, Clin Oral Implants Res, 22, 779 (2011).
D Schwartz-Arad, L Levin, Intraoral autogenous block onlay bone grafting for extensive reconstruction of atrophic maxillary alveolar ridges, J Periodontol, 76, 636 (2005).
CM Misch, Use of the mandibular ramus as a donor site for onlay bone grafting, J Oral Implantol, 26, 42 (2000).
D Schwartz-Arad, L Levin, L Sigal, Surgical success of intraoral autogenous block onlay bone grafting for alveolar ridge augmentation, Implant Dent, 14, 131 (2005).
FM Silva, AL Cortez, RW Moreira, et al., Complications of intraoral donor site for bone grafting prior to implant placement, Implant Dent, 15, 420 (2006).
N Baldini, M De Sanctis, M Ferrari. Deproteinized bovine bone in periodontal and implant surgery, Dent Mater, 27, 61 (2011).
MA Reynolds, ME Aichelmann-Reidy, GL Branch-Mays, et al., The efficacy of bone replacement grafts in the treatment of periodontal osseous defects. A systematic review, Ann Periodontol, 8, 227 (2003).
SJ Froum, SS Wallace, N Elian, et al., Comparison of mineralized cancellous bone allograft (Puros) and anorganic bovine bone matrix (Bio-Oss) for sinus augmentation: histomorphometry at 26 to 32 weeks after grafting, Int J Periodontics Restorative Dent, 26, 543 (2006).
DA Cottrell, LM Wolford, Long-term evaluation of the use of coralline hydroxyapatite in orthognathic surgery, J Oral Maxillofac Surg, 56, 935 (1998).
MP Bostrom, DA Seigerman, The clinical use of allografts, demineralized bone matrices, synthetic bone graft substitutes and osteoinductive growth factors: a survey study, HSS J, 1, 9 (2005).
Y Kim, H Nowzari, SK Rich, Risk of prion disease transmission through bovine-derived bone substitutes: A systematic review, Clin Implant Dent Relat Res, 15, 645 (2013).
C Balázsi, F Wéber, Z Kövér, et al., Preparation of calcium-phosphate bioceramics from natural resources, J Eur Ceram Soc, 27, 1601 (2007).
G Gergely, F Wéber, I Lukács, et al., Nano-hydroxyapatite preparation from biogenic raw materials, Cent Eur J Chem, 8, 375 (2010).
SW Lee, SG Kim, C Balázsi, et al., Comparative study of hydroxyapatite from eggshells and synthetic hydroxyapatite for bone regeneration, Oral Surg Oral Med Oral Pathol Oral Radiol, 113, 348 (2012).
E Damien, PA Revell, Coralline hydroxyapatite bone graft substitute: A review of experimental studies and biomedical applications, J Appl Biomater Biomech, 2, 65 (2004).
JW Park, JH Jang, SR Bae, et al., Bone formation with various bone graft substitutes in critical-sized rat calvarial defect, Clin Oral Implants Res, 20, 372 (2009).
JW Park, SR Bae, JY Suh, et al., Evaluation of bone healing with eggshell-derived bone graft substitutes in rat calvaria: a pilot study, J Biomed Mater Res A, 87, 203 (2008).
L Dupoirieux, D Pourquier, M Neves, et al., Resorption kinetics of eggshell: an in vivo study, J Craniofac Surg, 12, 53 (2001).
L Dupoirieux, D Pourquier, F Souyris, Powdered eggshell: a pilot study on a new bone substitute for use in maxillofacial surgery, J Craniomaxillofac Surg, 23, 187 (1995).
L Dupoirieux, Ostrich eggshell as a bone substitute: a preliminary report of its biological behaviour in animals—a possibility in facial reconstructive surgery, Br J Oral Maxillofac Surg, 37, 467 (1999).
S Uygur, S Ozmen, S Kandal, et al., Reconstruction of cranial bone defects using Struthiocamelus eggshell, J Craniofac Surg, 22, 1843 (2011).
E Durmu, I Celik, MF Aydin, et al., Evaluation of the biocompatibility and osteoproductive activity of ostrich eggshell powder in experimentally induced calvarial defects in rabbits, J Biomed Mater Res B Appl Biomater, 86, 82 (2008).
KS Vecchio, X Zhang, JB Massie, et al., Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants, Acta Biomater, 3, 910 (2007).
B Venugopal, T Luckey, Metal Toxicity in Mammals. New York, Plenum, (1978).
F Witte, H Ulrich, M Rudert, et al., Biodegradable magnesium scaffolds: Part I: Appropriate inflammatory response, J Biomed Mater Res, 81A, 748 (2007).
O Gauthier, JM Bouler, P Weiss, et al., Short-term effects of mineral particle sizes on cellular degradation activity after implantation of injectable calcium phosphate biomaterials and the consequences for bone substitution, Bone, 25, 71S (1999).
A Creedon, A Flynn, K Cashman, The effect of moderately and severely restricted dietary magnesium intakes on bone composition and bone metabolism in the rat, Br J Nutr, 82, 63 (1999).
Y Toba, Y Kajita, R Masuyama, et al., Dietary magnesium supplementation affects bone metabolism and dynamic strength of bone in ovariectomized rats, J Nutr, 130, 216 (2000).
R Crespi, P Capparè, A Addis, et al., Injectable magnesiumenriched hydroxyapatite putty in peri-implant defects: a histomorphometric analysis in pigs, Int J Oral Maxillofac Implants, 27, 95 (2012).
F Wu, J Su, J Wei, et al., Injectable bioactive calciummagnesium phosphate cement for bone regeneration, Biomed Mater, 3, 044105 (2008).
J Jia, H Zhou, J Wei, et al., Development of magnesium calcium phosphate biocement for bone regeneration, J R Soc Interface, 7, 1171 (2010).
M Lalk, J Reifenrath, N Angrisani, et al., Fluoride and calciumphosphate coated sponges of the magnesium alloy AX30 as bone grafts: a comparative study in rabbits, J Mater Sci Mater Med, 24, 417 (2013).