Comparative Study of Electrospun Scaffolds Containing Native GAGs and a GAG Mimetic for Human Mesenchymal Stem Cell Chondrogenesis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Anderson, R. A., K. Feathergill, X.-H. Diao, C. Chany, W. F. Rencher, L. J. D. Zaneveld, and D. P. Waller. Contraception by Ushercell™ (cellulose sulfate) in formulation: duration of effect and dose effectiveness. Contraception 70:415–422, 2004.
Antonio, J. D. S., B. M. Winston, and R. S. Tuan. Regulation of chondrogenesis by heparan sulfate and structurally related glycosaminoglycans. Dev. Biol. 123:17–24, 1987.
Arai, Y., S. Park, B. Choi, K.-W. Ko, W. Choi, J.-M. Lee, D.-W. Han, H.-K. Park, I. Han, J. Lee, and S.-H. Lee. Enhancement of matrix metalloproteinase-2 (MMP-2) as a potential chondrogenic marker during chondrogenic differentiation of human adipose-derived stem cells. International Journal of Molecular Sciences 17:963, 2016.
Bhosale, A. M., and J. B. Richardson. Articular cartilage: structure, injuries and review of management. British Medical Bulletin 87:77–95, 2008.
Brown, G. C., K. S. Lim, B. L. Farrugia, G. J. Hooper, and T. B. Woodfield. Fabrication of gelatin-heparin hydrogels with enhanced chondrogenic differentiation and tunable degradation. Front. Bioeng. Biotechnol., 2016. https://doi.org/10.3389/conf.fbioe.2016.01.00613.
Buckwalter, J. A., and H. J. Mankin. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instructional Course Lectures 47:477–486, 1998.
Chameettachal, S., S. Midha, and S. Ghosh. Regulation of chondrogenesis and hypertrophy in silk fibroin-gelatin-based 3D bioprinted constructs. ACS Biomater. Sci. Eng. 2:1450–1463, 2016.
Chang, K.-Y., L.-W. Cheng, G.-H. Ho, Y.-P. Huang, and Y.-D. Lee. Fabrication and characterization of poly(γ-glutamic acid)-graft-chondroitin sulfate/polycaprolactone porous scaffolds for cartilage tissue engineering. Acta Biomater. 5:1937–1947, 2009.
Chen, J., Y. Wang, C. Chen, C. Lian, T. Zhou, B. Gao, Z. Wu, and C. Xu. Exogenous heparan sulfate enhances the TGF-β3-induced chondrogenesis in human mesenchymal stem cells by activating TGF-β/Smad signaling. Stem Cells Int. 2016:10, 2016.
Chen, F., S. Yu, B. Liu, Y. Ni, C. Yu, Y. Su, X. Zhu, X. Yu, Y. Zhou, and D. Yan. An injectable enzymatically crosslinked carboxymethylated pullulan/chondroitin sulfate hydrogel for cartilage tissue engineering. Sci. Rep. 6:20014, 2016.
Detterline, A. J., S. Goldberg, B. R. J. Bach, and B. J. Cole. Treatment options for articular cartilage defects of the knee. Orthop. Nurs. 24:361–366, 2005.
Enobakhare, B. O., D. L. Bader, and D. A. Lee. Quantification of sulfated glycosaminoglycans in chondrocyte/alginate cultures, by use of 1,9-dimethylmethylene blue. Anal. Biochem. 243:189–191, 1996.
Gama, C. I., S. E. Tully, N. Sotogaku, P. M. Clark, M. Rawat, N. Vaidehi, W. A. Goddard, A. Nishi, and L. C. Hsieh-Wilson. Sulfation patterns of glycosaminoglycans encode molecular recognition and activity. Nature Chemical Biology 2:467, 2006.
Groth, T., and W. Wagenknecht. Anticoagulant potential of regioselective derivatized cellulose. Biomaterials 22:2719–2729, 2001.
Hempel, U., V. Hintze, S. Möller, M. Schnabelrauch, D. Scharnweber, and P. Dieter. Artificial extracellular matrices composed of collagen I and sulfated hyaluronan with adsorbed transforming growth factor β1 promote collagen synthesis of human mesenchymal stromal cells. Acta Biomater. 8:659–666, 2012.
Huang, G. P., R. Menezes, R. Vincent, W. Hammond, L. Rizio, G. Collins, and T. L. Arinzeh. Gelatin scaffolds containing partially sulfated cellulose promote mesenchymal stem cell chondrogenesis. Tissue Eng. A 23:1011–1021, 2017.
Huang, G. P., A. Molina, N. Tran, G. Collins, and T. L. Arinzeh. Investigating cellulose derived glycosaminoglycan mimetic scaffolds for cartilage tissue engineering applications. J. Tissue Eng. Regen. Med. 12:e592–e603, 2018.
Huang, G. P., S. Shanmugasundaram, P. Masih, D. Pandya, S. Amara, G. Collins, and T. L. Arinzeh. An investigation of common crosslinking agents on the stability of electrospun collagen scaffolds. J. Biomed. Mater. Res. A 103:762–771, 2015.
Huang, Z.-M., Y. Z. Zhang, S. Ramakrishna, and C. T. Lim. Electrospinning and mechanical characterization of gelatin nanofibers. Polymer 45:5361–5368, 2004.
Jaiswal, N., S. E. Haynesworth, A. I. Caplan, and S. P. Bruder. Osteogenic differentiation of purified culture-expanded human mesenchymal stem cells in vitro. J. Cell. Biochem. 64:295–312, 1997.
Kawamura, D., T. Funakoshi, S. Mizumoto, K. Sugahara, and N. Iwasaki. Sulfation patterns of exogenous chondroitin sulfate affect chondrogenic differentiation of ATDC5 cells. J. Orthop. Sci. 19:1028–1035, 2014.
Kim, M., I. E. Erickson, M. Choudhury, N. Pleshko, and R. L. Mauck. Transient exposure to TGF-β3 improves the functional chondrogenesis of msc-laden hyaluronic acid hydrogels. J. Mech. Behav. Biomed. Mater. 11:92–101, 2012.
Levett, P. A., F. P. W. Melchels, K. Schrobback, D. W. Hutmacher, J. Malda, and T. J. Klein. A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Acta Biomater. 10:214–223, 2014.
Menezes, R., S. Hashemi, R. Vincent, G. Collins, J. Meyer, M. Foston, and T. L. Arinzeh. Investigation of glycosaminoglycan mimetic scaffolds for neurite growth. Acta Biomater. 90:169–178, 2019.
Mucci, A., L. Schenetti, and N. Volpi. 1H and 13C nuclear magnetic resonance identification and characterization of components of chondroitin sulfates of various origin. Carbohydr. Polym. 41:37–45, 2000.
Mueller, M. B., M. Fischer, J. Zellner, A. Berner, T. Dienstknecht, L. Prantl, R. Kujat, M. Nerlich, R. S. Tuan, and P. Angele. Hypertrophy in mesenchymal stem cell chondrogenesis: effect of TGF-β isoforms and chondrogenic conditioning. Cells Tissues Organs 192:158–166, 2010.
Mueller, M. B., and R. S. Tuan. Functional characterization of hypertrophy in chondrogenesis of human mesenchymal stem cells. Arthritis Rheum. 58:1377–1388, 2008.
Nazempour, A., and B. J. Van Wie. Chondrocytes, mesenchymal stem cells, and their combination in articular cartilage regenerative medicine. Ann. Biomed. Eng. 44:1325–1354, 2016.
Petersen, W., M. Tsokos, and T. Pufe. Expression of VEGF121 and VEGF165 in hypertrophic chondrocytes of the human growth plate and epiphyseal cartilage. J. Anat. 201:153–157, 2002.
Pfander, D., D. Kortje, R. Zimmermann, G. Weseloh, T. Kirsch, M. Gesslein, T. Cramer, and B. Swoboda. Vascular endothelial growth factor in articular cartilage of healthy and osteoarthritic human knee joints. Ann. Rheum. Dis. 60:1070–1073, 2001.
Portocarrero, G., G. Collins, and T. Livingston Arinzeh. Challenges in cartilage tissue engineering. J. Tissue Sci. Eng. 4:120, 2013.
Rastogi, A., H. Kim, J. D. Twomey, and A. H. Hsieh. MMP-2 mediates local degradation and remodeling of collagen by annulus fibrosus cells of the intervertebral disc. Arthritis Res. Therapy 15:R57–R57, 2013.
Robinson, D. E., D. J. Buttle, R. D. Short, S. L. McArthur, D. A. Steele, and J. D. Whittle. Glycosaminoglycan (GAG) binding surfaces for characterizing GAG-protein interactions. Biomaterials 33:1007–1016, 2012.
Saporito, F., G. Sandri, M. C. Bonferoni, S. Rossi, L. Malavasi, C. D. Fante, B. Vigani, L. Black, and F. Ferrari. Electrospun gelatin-chondroitin sulfate scaffolds loaded with platelet lysate promote immature cardiomyocyte proliferation. Polymers 10:208, 2018.
Schaffellner, S., V. Stadlbauer, P. Stiegler, O. Hauser, G. Halwachs, C. Lackner, F. Iberer, and K. H. Tscheliessnigg. Porcine islet cells microencapsulated in sodium cellulose sulfate. Transplant. Proc. 37:248–252, 2005.
Shanmugasundaram, S., H. Chaudhry, and T. L. Arinzeh. Microscale versus nanoscale scaffold architecture for mesenchymal stem cell chondrogenesis. Tissue Eng. A 17:831–840, 2010.
Skotak, M., S. Noriega, G. Larsen, and A. Subramanian. Electrospun cross-linked gelatin fibers with controlled diameter: the effect of matrix stiffness on proliferative and biosynthetic activity of chondrocytes cultured in vitro. J. Biomed. Mater. Res. A 95A:828–836, 2010.
Sophia-Fox, A. J., A. Bedi, and S. A. Rodeo. The basic science of articular cartilage: structure, composition, and function. Sports Health 1:461–468, 2009.
Stone, A. Microbicides: a new approach to preventing HIV and other sexually transmitted infections. Nat. Rev. Drug Discov. 1:977, 2002.
Temenoff, J. S., and A. G. Mikos. Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21:431–440, 2000.
Ting, L., T. W. Keng, B. P. Chew, and C. S. Yian. Photochemical crosslinked electrospun collagen nanofibers: synthesis, characterization and neural stem cell interactions. J. Biomed. Mater. Res. A 95A:276–282, 2010.
Varghese, S., N. S. Hwang, A. C. Canver, P. Theprungsirikul, D. W. Lin, and J. Elisseeff. Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biology 27:12–21, 2008.
Wang, H., Y. Feng, Z. Fang, R. Xiao, W. Yuan, and M. Khan. Fabrication and characterization of electrospun gelatin-heparin nanofibers as vascular tissue engineering. Macromolecular Research 21:860–869, 2013.
Wirth, C. J., and M. Rudert. Techniques of cartilage growth enhancement: a review of the literature. Arthroscopy 12:300–308, 1996.
Yoo, H. S., E. A. Lee, J. J. Yoon, and T. G. Park. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials 26:1925–1933, 2005.