Comparative Study of Electrospun Scaffolds Containing Native GAGs and a GAG Mimetic for Human Mesenchymal Stem Cell Chondrogenesis

Springer Science and Business Media LLC - Tập 48 Số 7 - Trang 2040-2052 - 2020
Roseline Menezes1, Treena Livingston Arinzeh1
1Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anderson, R. A., K. Feathergill, X.-H. Diao, C. Chany, W. F. Rencher, L. J. D. Zaneveld, and D. P. Waller. Contraception by Ushercell™ (cellulose sulfate) in formulation: duration of effect and dose effectiveness. Contraception 70:415–422, 2004.

Antonio, J. D. S., B. M. Winston, and R. S. Tuan. Regulation of chondrogenesis by heparan sulfate and structurally related glycosaminoglycans. Dev. Biol. 123:17–24, 1987.

Arai, Y., S. Park, B. Choi, K.-W. Ko, W. Choi, J.-M. Lee, D.-W. Han, H.-K. Park, I. Han, J. Lee, and S.-H. Lee. Enhancement of matrix metalloproteinase-2 (MMP-2) as a potential chondrogenic marker during chondrogenic differentiation of human adipose-derived stem cells. International Journal of Molecular Sciences 17:963, 2016.

Bhosale, A. M., and J. B. Richardson. Articular cartilage: structure, injuries and review of management. British Medical Bulletin 87:77–95, 2008.

Brown, G. C., K. S. Lim, B. L. Farrugia, G. J. Hooper, and T. B. Woodfield. Fabrication of gelatin-heparin hydrogels with enhanced chondrogenic differentiation and tunable degradation. Front. Bioeng. Biotechnol., 2016. https://doi.org/10.3389/conf.fbioe.2016.01.00613.

Buckwalter, J. A., and H. J. Mankin. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instructional Course Lectures 47:477–486, 1998.

Chameettachal, S., S. Midha, and S. Ghosh. Regulation of chondrogenesis and hypertrophy in silk fibroin-gelatin-based 3D bioprinted constructs. ACS Biomater. Sci. Eng. 2:1450–1463, 2016.

Chang, K.-Y., L.-W. Cheng, G.-H. Ho, Y.-P. Huang, and Y.-D. Lee. Fabrication and characterization of poly(γ-glutamic acid)-graft-chondroitin sulfate/polycaprolactone porous scaffolds for cartilage tissue engineering. Acta Biomater. 5:1937–1947, 2009.

Chen, J., Y. Wang, C. Chen, C. Lian, T. Zhou, B. Gao, Z. Wu, and C. Xu. Exogenous heparan sulfate enhances the TGF-β3-induced chondrogenesis in human mesenchymal stem cells by activating TGF-β/Smad signaling. Stem Cells Int. 2016:10, 2016.

Chen, F., S. Yu, B. Liu, Y. Ni, C. Yu, Y. Su, X. Zhu, X. Yu, Y. Zhou, and D. Yan. An injectable enzymatically crosslinked carboxymethylated pullulan/chondroitin sulfate hydrogel for cartilage tissue engineering. Sci. Rep. 6:20014, 2016.

Detterline, A. J., S. Goldberg, B. R. J. Bach, and B. J. Cole. Treatment options for articular cartilage defects of the knee. Orthop. Nurs. 24:361–366, 2005.

Enobakhare, B. O., D. L. Bader, and D. A. Lee. Quantification of sulfated glycosaminoglycans in chondrocyte/alginate cultures, by use of 1,9-dimethylmethylene blue. Anal. Biochem. 243:189–191, 1996.

Gama, C. I., S. E. Tully, N. Sotogaku, P. M. Clark, M. Rawat, N. Vaidehi, W. A. Goddard, A. Nishi, and L. C. Hsieh-Wilson. Sulfation patterns of glycosaminoglycans encode molecular recognition and activity. Nature Chemical Biology 2:467, 2006.

Groth, T., and W. Wagenknecht. Anticoagulant potential of regioselective derivatized cellulose. Biomaterials 22:2719–2729, 2001.

Hempel, U., V. Hintze, S. Möller, M. Schnabelrauch, D. Scharnweber, and P. Dieter. Artificial extracellular matrices composed of collagen I and sulfated hyaluronan with adsorbed transforming growth factor β1 promote collagen synthesis of human mesenchymal stromal cells. Acta Biomater. 8:659–666, 2012.

Huang, G. P., R. Menezes, R. Vincent, W. Hammond, L. Rizio, G. Collins, and T. L. Arinzeh. Gelatin scaffolds containing partially sulfated cellulose promote mesenchymal stem cell chondrogenesis. Tissue Eng. A 23:1011–1021, 2017.

Huang, G. P., A. Molina, N. Tran, G. Collins, and T. L. Arinzeh. Investigating cellulose derived glycosaminoglycan mimetic scaffolds for cartilage tissue engineering applications. J. Tissue Eng. Regen. Med. 12:e592–e603, 2018.

Huang, G. P., S. Shanmugasundaram, P. Masih, D. Pandya, S. Amara, G. Collins, and T. L. Arinzeh. An investigation of common crosslinking agents on the stability of electrospun collagen scaffolds. J. Biomed. Mater. Res. A 103:762–771, 2015.

Huang, Z.-M., Y. Z. Zhang, S. Ramakrishna, and C. T. Lim. Electrospinning and mechanical characterization of gelatin nanofibers. Polymer 45:5361–5368, 2004.

Jaiswal, N., S. E. Haynesworth, A. I. Caplan, and S. P. Bruder. Osteogenic differentiation of purified culture-expanded human mesenchymal stem cells in vitro. J. Cell. Biochem. 64:295–312, 1997.

Kawamura, D., T. Funakoshi, S. Mizumoto, K. Sugahara, and N. Iwasaki. Sulfation patterns of exogenous chondroitin sulfate affect chondrogenic differentiation of ATDC5 cells. J. Orthop. Sci. 19:1028–1035, 2014.

Kim, M., I. E. Erickson, M. Choudhury, N. Pleshko, and R. L. Mauck. Transient exposure to TGF-β3 improves the functional chondrogenesis of msc-laden hyaluronic acid hydrogels. J. Mech. Behav. Biomed. Mater. 11:92–101, 2012.

Levett, P. A., F. P. W. Melchels, K. Schrobback, D. W. Hutmacher, J. Malda, and T. J. Klein. A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Acta Biomater. 10:214–223, 2014.

McCarthy, B. Antivirals—an increasingly healthy investment. Nat. Biotechnol. 25:1390, 2007.

Menezes, R., S. Hashemi, R. Vincent, G. Collins, J. Meyer, M. Foston, and T. L. Arinzeh. Investigation of glycosaminoglycan mimetic scaffolds for neurite growth. Acta Biomater. 90:169–178, 2019.

Mucci, A., L. Schenetti, and N. Volpi. 1H and 13C nuclear magnetic resonance identification and characterization of components of chondroitin sulfates of various origin. Carbohydr. Polym. 41:37–45, 2000.

Mueller, M. B., M. Fischer, J. Zellner, A. Berner, T. Dienstknecht, L. Prantl, R. Kujat, M. Nerlich, R. S. Tuan, and P. Angele. Hypertrophy in mesenchymal stem cell chondrogenesis: effect of TGF-β isoforms and chondrogenic conditioning. Cells Tissues Organs 192:158–166, 2010.

Mueller, M. B., and R. S. Tuan. Functional characterization of hypertrophy in chondrogenesis of human mesenchymal stem cells. Arthritis Rheum. 58:1377–1388, 2008.

Nazempour, A., and B. J. Van Wie. Chondrocytes, mesenchymal stem cells, and their combination in articular cartilage regenerative medicine. Ann. Biomed. Eng. 44:1325–1354, 2016.

Petersen, W., M. Tsokos, and T. Pufe. Expression of VEGF121 and VEGF165 in hypertrophic chondrocytes of the human growth plate and epiphyseal cartilage. J. Anat. 201:153–157, 2002.

Pfander, D., D. Kortje, R. Zimmermann, G. Weseloh, T. Kirsch, M. Gesslein, T. Cramer, and B. Swoboda. Vascular endothelial growth factor in articular cartilage of healthy and osteoarthritic human knee joints. Ann. Rheum. Dis. 60:1070–1073, 2001.

Portocarrero, G., G. Collins, and T. Livingston Arinzeh. Challenges in cartilage tissue engineering. J. Tissue Sci. Eng. 4:120, 2013.

Rastogi, A., H. Kim, J. D. Twomey, and A. H. Hsieh. MMP-2 mediates local degradation and remodeling of collagen by annulus fibrosus cells of the intervertebral disc. Arthritis Res. Therapy 15:R57–R57, 2013.

Robinson, D. E., D. J. Buttle, R. D. Short, S. L. McArthur, D. A. Steele, and J. D. Whittle. Glycosaminoglycan (GAG) binding surfaces for characterizing GAG-protein interactions. Biomaterials 33:1007–1016, 2012.

Saporito, F., G. Sandri, M. C. Bonferoni, S. Rossi, L. Malavasi, C. D. Fante, B. Vigani, L. Black, and F. Ferrari. Electrospun gelatin-chondroitin sulfate scaffolds loaded with platelet lysate promote immature cardiomyocyte proliferation. Polymers 10:208, 2018.

Schaffellner, S., V. Stadlbauer, P. Stiegler, O. Hauser, G. Halwachs, C. Lackner, F. Iberer, and K. H. Tscheliessnigg. Porcine islet cells microencapsulated in sodium cellulose sulfate. Transplant. Proc. 37:248–252, 2005.

Shanmugasundaram, S., H. Chaudhry, and T. L. Arinzeh. Microscale versus nanoscale scaffold architecture for mesenchymal stem cell chondrogenesis. Tissue Eng. A 17:831–840, 2010.

Skotak, M., S. Noriega, G. Larsen, and A. Subramanian. Electrospun cross-linked gelatin fibers with controlled diameter: the effect of matrix stiffness on proliferative and biosynthetic activity of chondrocytes cultured in vitro. J. Biomed. Mater. Res. A 95A:828–836, 2010.

Sophia-Fox, A. J., A. Bedi, and S. A. Rodeo. The basic science of articular cartilage: structure, composition, and function. Sports Health 1:461–468, 2009.

Stone, A. Microbicides: a new approach to preventing HIV and other sexually transmitted infections. Nat. Rev. Drug Discov. 1:977, 2002.

Temenoff, J. S., and A. G. Mikos. Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21:431–440, 2000.

Ting, L., T. W. Keng, B. P. Chew, and C. S. Yian. Photochemical crosslinked electrospun collagen nanofibers: synthesis, characterization and neural stem cell interactions. J. Biomed. Mater. Res. A 95A:276–282, 2010.

Varghese, S., N. S. Hwang, A. C. Canver, P. Theprungsirikul, D. W. Lin, and J. Elisseeff. Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biology 27:12–21, 2008.

Wang, H., Y. Feng, Z. Fang, R. Xiao, W. Yuan, and M. Khan. Fabrication and characterization of electrospun gelatin-heparin nanofibers as vascular tissue engineering. Macromolecular Research 21:860–869, 2013.

Wirth, C. J., and M. Rudert. Techniques of cartilage growth enhancement: a review of the literature. Arthroscopy 12:300–308, 1996.

Yoo, H. S., E. A. Lee, J. J. Yoon, and T. G. Park. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials 26:1925–1933, 2005.

Zheng, W., W. Zhang, and X. Jiang. Biomimetic collagen nanofibrous materials for bone tissue engineering. Advanced Engineering Materials 12:B451–B466, 2010.