Comparative Study of Different Types of Digital Elevation Models on the Basis of Drainage Morphometric Parameters (Case Study of Wadi Fatimah Basin, KSA)

Springer Science and Business Media LLC - Tập 3 Số 3 - Trang 539-550 - 2019
Burhan Niyazi1, Syed Zaidi1, Milad Masoud2,1
1Water Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
2Hydrology Department, Desert Research Center, Cairo, Egypt

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bali R, Agarwal KK, Nawaz Ali S, Rastogi SK, Krishna K (2011) Drainage morphometry of the Himalayas glacio-fluvial basin, India: hydrologic and neotectonic implications. Environ Earth Sci 66(4):1163–1174

Band LE (1986) Topographic partition of watersheds with digital elevation models. Water Resour Res 22:15–24

Basahi J, Masoud M, Zaidi S (2016) Integration between morphometric parameters, hydrologic model, and geo-informatics techniques for estimating WADI runoff (case study WADI HALYAH—Saudi Arabia). Arabian J Geosci. https://doi.org/10.1007/s12517-016-2649-6 (13 Article number 610)

Callaghan J, Mark DM (1984) The extraction of drainage networks from digital elevation data. Comput Vis Graph Image Process 28(3):323–344

Caraballo-Arias NA, Conoscenti C, Di Stefano C, Ferro V (2014) Testing GIS-morphometric analysis of some Sicilian badlands. Catena 113:370–376

Chorley RJ, Morley LSD (1959) A simplified approximation for the hypsometric integral. J Geol 67:566–571

Cook AJ, Murray T, Luckman A, Vaughan DG, Barrand NE (2012) A new 100-m digital elevation model of the Antarctic Peninsula derived from ASTER Global DEM: methods and accuracy assessment. Earth Syst Sci Data 4:129–142

Das S, Patel PP, Sengupta S (2016) Evaluation of different digital elevation models for analysing drainage morphometric parameters in a mountainous Terrain: a case study of the Supin-Upper Tons Basin, Indian Himalayas. Springer, Berlin, p 38. https://doi.org/10.1186/s40064-016-3207-0

Dawod G (2008) Towards the redefinition of the Egyptian geoid: performance analysis of recent global geoid and digital terrain models. J Spat Sci 53(1):31–42

Denker H (2005) Evaluation of SRTM3 and GTOPO30 Terrain Data in Germany. In: Jekeli C, Bastos L, Fernandes J (eds) Gravity, Geoid and Space Missions. International Association of Geodesy Symposia, vol 129. Springer, Berlin, Heidelberg

Dietrich WE, Wilson CJ, Montgomery DR, McKean J (1993) Analysis of erosion thresholds, channel networks, and landscape morphology, using a digital terrain model. J Geol 101(2):259–278

Dragut L, Schauppenlehner T, Muhar A, Strobl J, Blaschke T (2009) Optimization of scale and parametrization for terrain segmentation: an application to soil-landscape modeling. Comput Geosci 35(9):1875–1883

Eckert S, Kellenberger T, Itten K (2005) Accuracy assessment of automatically derived digital elevation models from aster data in mountainous terrain. Int J Remote Sens 26(9):1943–1957

Elfeki A, Masoud M, Niyazi B (2017) Integrated rainfall–runoff and flood inundation modeling for flash flood risk assessment under data scarcity in arid regions: Wadi Fatimah basin case study, Saudi Arabia. Nat Hazards 85(1):87–109. https://doi.org/10.1007/s11069-016-2559-7

Evans IE (2012) Geo-morphometry and landform mapping: what is a landform? Geomorphology 137:94–106

Faniran A (1968) The index of drainage intensity—a provisional new drainage factor. Aust J Sci 31:328–330

Ferraris F, Firpo M, Pazzaglia FJ (2012) DEM analyses and morphotectonic interpretation: the Plio Quaternary evolution of the eastern Ligurian Alps Italy. Geomorphology 149–150:27–40

Gopinath G, Swetha TV, Ashitha MK (2014) Automated extraction of watershed boundary and drainage network from SRTM and comparison with Survey of India toposheet. Arab J Geosci 7(7):2625–2632

Gorokhovich Y, Voustianiouk A (2006) Accuracy assessment of the processed-SRTM based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics. Remote Sens Environ 104:409–415

Goudie A (ed) (2004) Encyclopedia of geomorphology. Routledge, London GSI (Geological Survey of India) (2004) Geological Quadrangle Map–Kalpa Quadrangle, Himachal Pradesh and Uttar Pradesh. Geological Survey of India, Kolkata, p 1202

Gregory KJ, Walling DE (1973) Drainage basin form and process. Wiley, New York, p 456

Gurnell AM, Montgomery AR (1999) Hydrological applications of GIS. Wiley, Chichester, p 176

Haggett P (1965) Locational analysis in human geography 339. Edward Arnold Ltd, London

Hayakawa YS, Oguchi T, Lin Z (2008) Comparison of new and existing global digital elevation models ASTER-GDEM and SRTM-3. Geophys Res Lett 35:L17404

Hirt C, Filmer MS, Featherstone WE (2010) Comparison and validation of the recent freely available ASTER-GDEM ver1, SRTM ver4.1 and GEODATA DEM-9S ver3 digital elevation models over Australia. Aust J Earth Sci 57(3):337–347

Hooke JM (2008) Temporal variations in fluvial processes on an active meandering river over a 20-year period. Geomorphology 100:3–13

Horton RE (1932) Drainage basin characteristics. Trans Am Geophys Union 13:350–361

Horton RE (1945) Erosional development of streams and their drainage basins, hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56:275–370

Hosseinzadeh SR (2011) Drainage network analysis, comparison of digital elevation model (DEM) from ASTER with high resolution satellite image and aerial photographs. Int J Environ Sci Dev 2(3):194–198

Jacques PD, Salvador ED, Machado R, Grohmann CH, Nummer AR (2014) Application of morphometry in neotectonic studies at the eastern edge of the Parana Basin Santa Catarina State Brazil. Geomorphology 213:13–23

Jenson SK, Domingue JO (1988) Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm Eng Remote Sens 54:1593–1600

Kirby E, Whipple KX (2012) Expression of active tectonics in erosional landscapes. J Struct Geol 44:54–75

Kiser L, Kelly M (2010) GPS- vs. DEM-derived elevation estimates from a Hardwood dominated forest watershed. J Geogr Inform Sys 2:147–151

Korup O, Schmidt J, McSavaney MJ (2005) Regional relief characteristics and denudation pattern of the western Southern Alps New Zealand. Geomorphology 71:402–423

Lague D, Crave A, Davy P (2003) Laboratory experiments simulating the geomorphic response to tectonic uplift. J Geophys Res Solid Earth 108(B1):ETG 3-1–ETG 3-20

Lindsay JB, Evans MG (2008) The influence of elevation error on the morphometrics of channel networks extracted from DEMs and the implications for hydrological modelling. Hydrol Process 22(11):1588–1603

Maidment DR (2002) ArcHydro GIS for water resources. ESRI Press, California

Majure JJ, Soenksen PJ (1991) Using a geographic information system to determine physical basin characteristics for use in flood-frequency equations. In Balthrop BH, Terry JE (eds) US geological survey national computer technology Meeting-Proceedings, Phoenix, Arizona, November 14–18, 1988: US Geological Survey Water-Resources Investigations Report 90–4162:31–40

Masoud M (2015) Rainfall-runoff modeling of ungauged Wadis in arid environments (case study Wadi Rabigh—Saudi Arabia). Arab J Geosci 8(5):2587–2606. https://doi.org/10.1007/s12517-014-1404-0

Masoud M (2016) Geoinformatics application for assessing the morphometric characteristics’ effect on hydrological response at watershed (case study of Wadi Qanunah, Saudi Arabia). Arabian J Geosci. https://doi.org/10.1007/s12517-015-2300-y (Article number 280)

Melton M (1957) An Analysis of the Relations Among Elements of Climate, Surface Properties and Geomorphology. Department of Geology, Columbia University, Technical Report, 11, Project NR 389-042. Office of Navy Research, New York

Mesa LM (2006) Morphometric analysis of a sub-tropical Andean Basin (Tucuman Argentina). Environ Geol 50:1235–1242

Miller VC (1953) A quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee. Project NR, Technical Report 3, Columbia Univ., Department of Geology, ONR, Geography Branch, New York, pp 389–042

Morris DG, Heerdegen RG (1988) Automatically derived catchment boundaries and channel networks and their hydrological applications. Geomorphology 1:131–141

Mueller JE (1968) An introduction to the hydraulic and topographic sinuosity Indexes1. Ann Assoc Am Geogr 58(2):371–385

Pike RJ (2000) Geo-morphometry-diversity in quantitative surface analysis. Prog Phys Geogr 24(1):1–20

Prasanna kumar V, Vijith H, Geetha N (2013) Terrain evaluation through the assessment of geomorphometric parameters using DEM and GIS: case study of two major sub-watersheds in Attapady. South India. Arab J Geosci 6(4):1141–1151

Ragheb A (2015) Enhancement of google earth positional accuracy. Int J Eng Res Technol 4(1):627–630

Rinaldi M (2003) Recent channel adjustments in alluvial rivers of Tuscany, Central Italy. Earth Surf Process Land 28:587–608

San BT, Suzen ML (2005) Digital elevation model (DEM) generation and accuracy assessment from ASTER stereo data. Int J Remote Sens 26(22):5013–5027

Saran S, Sterk G, Peters P, Dadhwal VK (2009) Evaluation of digital elevation models for delineation of hydrological response units in a Himalayan watershed. Geocarto Int 25:105–122. https://doi.org/10.1080/10106040903051967

Schumm SA (1956) Evolution of drainage system and slope in badlands of Perth Amboy. New Jersey 67:597–546

Sefercik UG (2012) Performance estimation of ASTER Global DEM depending upon the terrain inclination. J Indian Soc Remote Sens 40:565–576

Sefercik UG, Alkan M (2009) Advanced analysis of differences between C and X Bands using SRTM data for mountainous topography. J Indian Soc Remote Sens 37:335–349

Smedberg E, Humborg C, Jakobsson M, Morth C-M (2009) Landscape elements and river chemistry as affected by river regulation—a 3-D perspective. Hydrol Earth Syst Sci 13:1597–1606

Snyder NP, Whipple KX, Tucker GE, Merritts DJ (2000) Landscape response to tectonic forcing: digital elevation model analysis of stream profiles in the Mendocino Triple Junction Region, Northern California. Geol Soc Am Bull 112(8):1250–1263

Strahler AN (1952) Hypsometric analysis of erosional topography. Bull Geol Soc Am 63:1117–1142

Strahler AN (1954) Quantitative geomorphology of erosional landscapes. In: Proceedings of the 19th international geological congress Algiers, vol 13, no 3, pp 341–354

Strahler AN (1957) Quantitative analysis of watershed geomorphology. Trans Am Geophys Union 38:913–920

Strahler AN (1964) Quantitative geomorphology of drainage basins and channel networks. Handbook of applied hydrology. McGraw Hill Book Company, New York, p 411

Summerfield MA, Hulton NJ (1994) Natural controls of fluvial denudational rates in major world drainage basins. J Geophys Res 99(B7):13871–13883

Suwandana E, Kawamura K, Sakuno Y, Kustiyanto E, Raharjo B (2012) Evaluation of ASTER GDEM2 in comparison with GDEM1, SRTM DEM and topographic-map-derived DEM using inundation area analysis and RTK-dGPS data. Remote Sens 4:2419–2431

Taramelli A, Reichenbach P, Ardizzone F (2008) Comparison of SRTM elevation data with cartographically derived DEMs in Italy. Rev Geogr Acad 2(2):41–52

Tarboton DG, Bras RL, Rodriguez-Iturbe I (1991) On the extraction of channel networks from digital elevation data. TT Hydrol Process 5:81–100

Trimble SW (2009) Fluvial processes, morphology and sediment budgets in the Coon Creek Basin, WI, USA, 1975–1993. Geomorphology 108:8–23

Tucker GE (2004) Drainage basin sensitivity to tectonic and climatic forcing: implications of a stochastic model for the role of entrainment and erosion thresholds. Earth Surf Process Land 29(2):185–205

USGS (United States Geological Survey) (2004) Shuttle radar topography mission, 3 Arc second scene SRTM_n036e052, Global Land Cover Facility. University of Maryland, College Park, p 2000

USGS (United States Geological Survey) and Japan ASTER Program (2003) ASTER scene ASTGTM2_N31E078_dem, 1B. USGS, Sioux Falls

Weydahl DJ, Sagstuen J, Dick OB, Ronning H (2007) SRTM DEM accuracy over vegetated areas in Norway. Int J Remote Sens 28(16):3513–3527

Whipple KX (2001) Fluvial landscape response time: how plausible is SteadyState denudation? Am J Sci 301:313–325

Whittaker AC (2012) How do landscapes record tectonics and climate? Lithosphere 4(2):160–164

Wilson JP, Aggett G, Deng Y, Lam CS (2008) Water in the landscape: a review of contemporary flow routing algorithms. In: Zhou Q, Lees B, Tang G (eds) Advances in digital terrain analysis. Lecture notes in geoformation and cartography series, vol 3. Springer, Berlin, pp 213–236

Wood J (1996) The geomorphological characterization of digital elevation models. PhD Dissertation, University of Leicester, p 466