Comparative Analysis of the Biomechanical Behavior of Collar and Collarless Stems: Experimental Testing and Finite Element Modelling

Springer Science and Business Media LLC - Tập 41 - Trang 844-855 - 2021
Ievgen Levadnyi1,2,3, José Eduardo Gubaua4,5, Gabriela Wessling Oening Dicati4,5, Jan Awrejcewicz2, Yaodong Gu1,3, Jucélio Tomás Pereira4,5, Alexander Loskutov6
1Faculty of Sports Science, Ningbo University, Ningbo, China
2Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, Lodz, Poland
3Research Academy of Grand Health 6 Interdisciplinary, Ningbo University, Ningbo, China
4Postgraduate Program in Mechanical Engineering, Federal University of Paraná, Curitiba, Brazil
5Laboratory of Computational Solid Mechanics, Federal University of Paraná, Curitiba, Brazil
6Dnipropetrovsk State Medical Academy, Dnipropetrovsk, Ukraine

Tóm tắt

During total hip replacement (THR), prosthesis material is stiffer than the bone tissue, decreasing load transmission to the host tissue around the prosthesis. After a THR, the aim is to achieve stress distribution along the femur close to normal physiological stress distribution for all loads transferred across the hip joint. In this study, we analyzed the advantages of using a collared stem over collarless one with the finite element method (FEM), strain gauges (SGs), and the digital image correlation (DIC) system. In the biomechanical tests, we implanted composite femurs and loaded them with the stance configuration in a universal testing machine (Instron). We compared the predicted strains with the strains recorded experimentally in the same regions of the femur. The results revealed that for collarless stems, a high level of stress concentration is observed in the distal region of the implant but not in the proximal region. The collared case presents a strain distribution closer to that of a healthy bone proximal zone that was almost two times better than in case of the collarless stem, whereas stresses in the distal part of the femur corresponded to a healthy state. Finally, the numerical results for the bone adaptation around the implant provided clear evidence that the collar design strongly influences the proximal resorption because of better load transmission. According to both the numerical and experimental results, a collar that connects to the bone cut may decrease the proximal stress shielding effect and distal cortical hypertrophy.

Tài liệu tham khảo

McLaughlin, J. R., & Lee, K. R. (2014). Uncemented total hip arthroplasty using a tapered femoral component in obese patients: An 18–27 year follow-up study. Journal of Arthroplasty, 29, 1365–1368. https://doi.org/10.1016/j.arth.2014.02.019 Casper, D. S., Kim, G. K., Restrepo, C., Parvizi, J., & Rothman, R. H. (2011). Primary total hip arthroplasty with an uncemented femoral component. Five- to Nine-Year Results. J Arthroplasty, 26, 838–841. https://doi.org/10.1016/j.arth.2011.02.010 Kovac, S., Trebse, R., Milosev, I., Pavlovcic, V., & Pisot, V. (2006). Long-term survival of a cemented titanium-aluminium-vanadium alloy straight-stem femoral component. Journal of Bone and Joint Surgery. British Volume, 88, 1567–1573. https://doi.org/10.1302/0301-620X.88B12.17796 Bucholz, R. W. (2014). Indications, techniques and results of total hip replacement in the united states. Rev Médica Clínica Las Condes., 25, 756–759. https://doi.org/10.1016/s0716-8640(14)70103-8 Huiskes, R., Weinans, H., & Rietbergen, B. (1992). The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clinical Orthopaedics and Related Research, 274, 124–134. https://doi.org/10.1097/00003086-199201000-00014 Doblare, M., & García, J. M. (2001). Application of an anisotropic bone- remodelling model based on a damage-repair theory to the analysis of the analysis of the proximal femur before and after total hip replacement. Journal of Biomechanics, 34, 1157–1170. https://doi.org/10.1016/s0021-9290(01)00069-0 Scannell, P. T., & Prendergast, P. J. (2009). Cortical and interfacial bone changes around a non-cemented hip implant: Simulations using a combined strain/damage remodelling algorithm. Medical Engineering & Physics, 31, 477–488. https://doi.org/10.1016/j.medengphy.2008.11.007 Al-Dirini, R. M. A., Huff, D., Zhang, J., Besier, T., Clement, J. G., & Taylor, M. (2018). Influence of collars on the primary stability of cementless femoral stems: A finite element study using a diverse patient cohort. Journal of Orthopaedic Research, 36, 1185–1195. https://doi.org/10.1002/jor.23744 Weinans, H., Huiskes, R., & Grootenboer, H. J. (1990). Trends of mechanical consequences and modeling of a fibrous membrane around femoral hip prostheses. Journal of Biomechanics, 23, 991–1000. https://doi.org/10.1016/0021-9290(90)90314-S Keaveny, T. M., & Bartel, D. L. (1993). Effects of porous coating, with and without collar support, on early relative motion for a cementless hip prosthesis. Journal of Biomechanics, 26, 1355–1368. https://doi.org/10.1016/0021-9290(93)90087-U Mandell, J. A., Carter, D. R., Goodman, S. B., Schurman, D. J., & Beaupré, G. S. (2004). A conical-collared intramedullary stem can improve stress transfer and limit micromotion. Clinical Biomechanics, 19, 695–703. https://doi.org/10.1016/j.clinbiomech.2004.04.004 Parvizi, J., Keisu, K. S., Hozack, W. J., Sharkey, P. F., & Rothman, R. H. (2004). Primary total hip arthroplasty with an uncemented femoral component: a long-term study of the taperloc stem. Journal of Arthroplasty, 19, 151–156. https://doi.org/10.1016/j.arth.2003.10.003 Jeon, I., Bae, J. Y., Park, J. H., Yoon, T. R., Todo, M., Mawatari, M., et al. (2011). The biomechanical effect of the collar of a femoral stem on total hip arthroplasty. Computer Methods in Biomechanics and Biomedical Engineering, 14, 103–112. https://doi.org/10.1080/10255842.2010.493513 Flecher, X., Blanc, G., Sainsous, B., Parratte, S., & Argenson, J. N. (2012). A customised collared polished stem may reduce the complication rate of impaction grafting in revision hip surgery. J Bone Jt Surg - Ser B., 94, 609–614. https://doi.org/10.1302/0301-620X.94B5.26828 Demey, G., Fary, C., Lustig, S., Neyret, P., & Si Selmi, T. A. (2011). Does a collar improve the immediate stability of uncemented femoral hip stems in total hip arthroplasty? a bilateral comparative cadaver study. Journal of Arthroplasty, 26, 1549–1555. https://doi.org/10.1016/j.arth.2011.03.030 Van Kleunen, J. P., Anbari, K. K., Vu, D., & Garino, J. P. (2006). Impaction allografting for massive femoral defects in revision hip arthroplasty using collared textured stems. Journal of Arthroplasty, 21, 362–371. https://doi.org/10.1016/j.arth.2005.04.041 Al-Najjim, M., Khattak, U., Sim, J., & Chambers, I. (2016). Differences in subsidence rate between alternative designs of a commonly used uncemented femoral stem. Journal of Orthopaedics, 13, 322–326. https://doi.org/10.1016/j.jor.2016.06.026 Apostu, D., Lucaciu, O., Berce, C., Lucaciu, D., & Cosma, D. (2018). Current methods of preventing aseptic loosening and improving osseointegration of titanium implants in cementless total hip arthroplasty: A review. Journal of International Medical Research, 46, 2104–2119. https://doi.org/10.1177/0300060517732697 Levadnyi, I., Awrejcewicz, J., Gubaua, J. E., & Pereira, J. T. (2017). Numerical evaluation of bone remodelling and adaptation considering different hip prosthesis designs. Clinical Biomechanics. https://doi.org/10.1016/j.clinbiomech.2017.10.015 Weber, E., Sundberg, M., & Flivik, G. (2014). Design modifications of the uncemented Furlong hip stem result in minor early subsidence but do not affect further stability: A randomized controlled RSA study with 5-year follow-up. Acta Orthopaedica, 85, 556–561. https://doi.org/10.3109/17453674.2014.958810 Bonin, N., Gedouin, J. E., Pibarot, V., Bejui-Hughues, J., Bothorel, H., Saffarini, M., et al. (2017). Proximal femoral anatomy and collared stems in hip arthroplasty: Is a single collar size sufficient? J Exp Orthop, 4, 6. https://doi.org/10.1186/s40634-017-0107-3 Morgan, E. F., Salisbury Palomares, K. T., Gleason, R. E., Bellin, D. L., Chien, K. B., Unnikrishnan, G. U., et al. (2010). Correlations between local strains and tissue phenotypes in an experimental model of skeletal healing. Journal of Biomechanics, 43, 2418–2424. https://doi.org/10.1016/j.jbiomech.2010.04.019 Thompson, M. L., Backman, D., Branemark, R., & Mechefske, C. K. (2011). Evaluating the bending response of two osseointegrated transfemoral implant systems using 3D digital image correlation. Journal of Biomechanical Engineering, 133, 1–9. https://doi.org/10.1115/1.4003871 Ghosh, R., Gupta, S., Dickinson, A., & Browne, M. (2012). Experimental validation of finite element models of intact and implanted composite hemipelvises using digital image correlation. Journal of Biomechanical Engineering, 134, 1–9. https://doi.org/10.1115/1.4007173 Sallam, H. E. M., Badawy, A. A. M., Saba, A. M., & Mikhail, F. A. (2010). Flexural behavior of strengthened steel–concrete composite beams by various plating methods. Journal of Constructional Steel Research, 66, 1081–1087. https://doi.org/10.1016/j.jcsr.2010.03.005 Pettersen, S. H., Wik, T. S., & Skallerud, B. (2009). Subject specific finite element analysis of stress shielding around a cementless femoral stem. Clinical Biomechanics, 24, 196–202. https://doi.org/10.1016/j.clinbiomech.2008.11.003 Ozcivici, E., Luu, Y. K., Adler, B., Qin, Y. X., Rubin, J., Judex, S., et al. (2010). Mechanical signals as anabolic agents in bone. Nature Reviews Rheumatology, 6, 50–59. https://doi.org/10.1038/nrrheum.2009.239 Bashiri, A., Sallam, H. E. M., & Abd-Elhady, A. A. (2020). Progressive failure analysis of a hip joint based on extended finite element method. Engineering Failure Analysis, 117, 104829. https://doi.org/10.1016/j.engfailanal.2020.104829 Bergmann, G., Bergmann, G., Deuretzabacher, G., Deuretzabacher, G., Heller, M., Heller, M., et al. (2001). Hip forces and gait patterns from rountine activities. Journal of Biomechanics, 34, 859–871. https://doi.org/10.1016/S0021-9290(01)00040-9 Jacobs, C. R., Levenston, M. E., Beaupré, G. S., Simo, J. C., & Carter, D. R. (1995). Numerical instabilities in bone remodeling simulations: The advantages of a node-based finite element approach. Journal of Biomechanics, 28, 449–459. https://doi.org/10.1016/0021-9290(94)00087-k Heller, M. O., Bergmann, G., Kassi, J. P., Claes, L., Haas, N. P., & Duda, G. N. (2005). Determination of muscle loading at the hip joint for use in pre-clinical testing. Journal of Biomechanics, 38, 1155–1163. https://doi.org/10.1016/j.jbiomech.2004.05.022 Huiskes, R., Weinans, H., Grootenboer, H., Dalstra, M., Fudala, B., & Slooff, T. (1987). Adaptive bone remodeling theory applied to prosthetic-design analysis. Journal of Biomechanics, 20, 1135–1150. Sumner, D. R. (2015). Long-term implant fixation and stress-shielding in total hip replacement. Journal of Biomechanics, 48, 797–800. https://doi.org/10.1016/j.jbiomech.2014.12.021 Oshkour, A. A., Osman, N. A. A., Bayat, M., Afshar, R., & Berto, F. (2014). Three-dimensional finite element analyses of functionally graded femoral prostheses with different geometrical configurations. Materials and Design, 56, 998–1008. https://doi.org/10.1016/j.matdes.2013.12.054 Manley, P. A., Vanderby, R., Kohles, M. S., Markel, M. D., & Heiner, J. P. (1995). Alterations in femoral strain, micromotion, cortical geometry, cortical porosity, and bony ingrowth in uncemented collared and collarless prostheses in the dog. Journal of Arthroplasty. https://doi.org/10.1016/s0883-5403(05)80102-0 Frost, H. M. (1990). Skeletal structural adaptations to mechanical usage ( SATMU ): 1. Redefining Wolff ’ s Law : The Bone Modeling Problem., 413, 403–413. Simpson, D. J., Kendrick, B. J. L., Hughes, M., & Rushforth, G. F. (2010). The migration patterns of two versions of the Furlong cementless femoral stem. Radiostereometric Analysis., 92, 1356–1362. https://doi.org/10.1302/0301-620X.92B10.24399 Camine, V. M., Rüdiger, H. A., Pioletti, D. P., & Terrier, A. (2018). Effect of a collar on subsidence and local micromotion of cementless femoral stems : in vitro comparative study based on micro-computerised tomography. International orthopaedics. https://doi.org/10.1007/s00264-017-3524-0 Perelgut, M. E., Polus, J. S., Lanting, B. A., & Teeter, M. G. (2020). The effect of femoral stem collar on implant migration and clinical outcomes following direct anterior approach total hip arthroplasty. Bone Jt J., 102, 1654–1661. https://doi.org/10.1302/0301-620X.102B12.BJJ-2019-1428.R1 Meding, J. B., Ritter, M. A., Keating, E., & Faris, P. M. (1997). Comparison of collared and collarless femoral components in primary uncemented total hip arthroplasty. Journal of Arthroplasty, 12, 273–280. https://doi.org/10.1016/s0883-5403(97)90023-1 Yamauchi, Y., Jinno, T., Koga, D., Asou, Y., Morita, S., & Okawa, A. (2012). Comparison of different distal designs of femoral components and their effects on bone remodeling in 1-stage bilateral total hip arthroplasty. Journal of Arthroplasty, 27, 1538–1543. https://doi.org/10.1016/j.arth.2012.01.031 Pawlikowski, M., Skalski, K., & Haraburda, M. (2003). Process of hip joint prosthesis design including bone remodeling phenomenon. Computers & Structures, 81, 887–893. https://doi.org/10.1016/S0045-7949(02)00428-5 Van Rietbergen, B., Huiskes, R., Weinans, H., Sumner, D. R., Turner, T. M., & Galante, J. O. (1993). The mechanism of bone remodeling and resorption around press-fitted THA stems. Journal of Biomechanics, 26, 369–382. https://doi.org/10.1016/0021-9290(93)90001-U Turner, A. W. L., Gillies, R. M., Sekel, R., Morris, P., Bruce, W., & Walsh, W. R. (2005). Computational bone remodelling simulations and comparisons with DEXA results. Journal of Orthopaedic Research, 23, 705–712. https://doi.org/10.1016/j.orthres.2005.02.002 Mehboob, H., Kim, J., Mehboob, A., & Chang, S. H. (2017). How post-operative rehabilitation exercises influence the healing process of radial bone shaft fractures fixed by a composite bone plate. Composite Structures, 159, 307–315. https://doi.org/10.1016/j.compstruct.2016.09.081 Fill, P. A., & Orth, M. (1998). Bone remodelling. British Journal of Orthodontics, 25, 101–107. https://doi.org/10.1016/j.medengphy.2011.12.001 Herrera, A., Panisello, J. J., Ibarz, E., Cegoñino, J., Puértolas, J. A., & Gracia, L. (2008). Densitometric and finite-element analysis of bone remodeling further to implantation of an uncemented anatomical femoral stem. Rev Española Cirugía Ortopédica y Traumatol, 52, 269–282. https://doi.org/10.1016/S1988-8856(08)70109-3 Weinans, H., Sumner, D. R., Igloria, R., & Natarajan, R. N. (2000). Sensitivity of periprosthetic stress-shielding to load and the bone density-modulus relationship in subject-specific finite element models. Journal of Biomechanics, 33, 809–817. https://doi.org/10.1016/S0021-9290(00)00036-1 Fischer, K. J., Carter, D. R., & Maloney, W. J. (1992). In vitro study of initial stability of a conical collared femoral component. J Arthroplast., 7, 389–395. https://doi.org/10.1016/S0883-5403(07)80029-5