Comparative Analysis of Thermal and Physico-Mechanical Properties of Polyethylene Compositions Containing Microcrystalline and Nanofibrillary Cellulose
Tóm tắt
The thermal and physico-mechanical properties of polyethylene composites with additives of microcrystalline and nanofibrillar cellulose (MCC and NFC) are investigated. Based on the results of the performed thermogravimetric analysis, the main temperature characteristics of the thermal and thermooxidative destruction of the obtained compositions are determined. The composition of the pyrolysis products of composite materials is analyzed using the method of pyrolytic chromatography–mass spectrometry. The effect of MCC and NFC additives on the nature of the mass distribution of hydrocarbon pyrolysis products of composite materials is established. This study also carries out a comparative assessment of the effect of MCC and NFC as fillers on the deformation and strength characteristics of polyethylene composites.
Tài liệu tham khảo
A. Elsabbagh, L. Steuernagel, and G. Ziegmann, Polym. Compos. 30, 510 (2009).
A. K. Bledzki, S. Reihmane, and J. Gassan, J. Appl. Polym. Sci. 59, 1329 (1996).
P. R. Hornsby, E. Hinrichsen, and K. Tarverdi, J. Mater. Sci. 32, 1009 (1997).
H. P. S. A. Khalil, A. H. Bhat, and A. F. I. Yusra, Carbohydr. Res. 87, 963 (2012).
P. Herrera-Franco and M. Aguilar-Vega, Appl. Polym. Sci. 65, 197 (1997).
A. Sdrobis, R. N. Darie, M. Totolin, et al., Composites, Part B 43, 1873 (2012).
H. Kardarzadeh, Handbook of Nanocellulose and Cellulose Nanocomposites (Wiley-VCH, Weinheim, 2017), p. 920.
V. V. Myasoedova, Russ. J. Phys. Chem. B 13, 853 (2019).
K. Y. Lee, Nanocellulose and Sustainability: Production, Properties, Applications, and Case Studies (UCRC, Boca Raton, FL, 2018), p. 314.
D. N. Saheb and J. P. Jog, Adv. Polym. Tech. 18, 351 (1999).
S. T. Georgopoulos, P. A. Tarantili, E. Avgerinos, et al., Polym. Degrad. Stab. 90, 303 (2008).
I. M. Low, M. McGrath, D. Lawrence, et al., Composites, Part A 38, 963 (2007).
H. Alamri and I. M. Low, Polym. Test. 31, 620 (2012).
A. Khalil, I. U. H. Bhat, M. Jawaid, et al., Mater. Des. 42, 353 (2012).
H. G. Mohamed, A. E. Mostafa, O. Kazuya, et al., Compos. Struct. 92, 1999 (2010).
A. Yu. Anpilova, E. E. Mastalygina, N. P. Khrameeva, and A. A. Popov, Russ. J. Phys. Chem. B 14, 176 (2020).
J. G. Gwon, H. J. Cho, D. Lee, et al., BioResources 13, 1619 (2018).
I. V. Voskoboinikov, S. A. Konstantinova, A. N. Korotkov, et al., Vestn. MGUL - Lesn. Vestn. 6, 151 (2010).
P. N. Brevnov, L. A. Novokshonova, V. G. Krasheninnikov, M. V. Gudkov, E. V. Koverzanova, S. V. Usachev, N. G. Shilkina, and S. M. Lomakin, Russ. J. Phys. Chem. B 13, 825 (2019).
M. L. Poutsma, Macromolecules 36, 8931 (2003).
M. Paabo and B. C. Levin, Fire Mater. 11, 55 (1987).
R. P. Lattimer, J. Anal. Appl. Pyrolys. 31, 203 (1995).
L. Soják, Pet. Coal 48, 1 (2006).
A. V. Khvatov, P. N. Brevnov, N. G. Shilkina, and S. M. Lomakin, Russ. J. Phys. Chem. B 13, 519 (2019).
Y. Xue, A. Kelkar, and X. Bai, Fuel 166, 227 (2016).
Y. Matsuzawa, M. Ayabe, and J. Nishino, Polym. Degrad. Stab. 71, 435 (2001).
I. Dubnikova, E. Kuvardina, V. Krasheninnikov, et al., J. Appl. Polym. Sci. 117, 259 (2010).