Comparative Analysis of Human-Derived Feeder Layers with 3T3 Fibroblasts for the Ex Vivo Expansion of Human Limbal and Oral Epithelium

Shiveta Sharma1,2, Thomas Armin Fuchsluger1,2, Sajjad Ahmad3, Kishore Reddy Katikireddy1,2, Myriam Armant4, Reza Dana5,1,2, Ula V. Jurkunas5,1,2
1Schepens Eye Research Institute, Boston, USA
2Department of Ophthalmology, Harvard Medical School, Boston, USA
3Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, UK
4Center for Human Cell Therapy, Immune Disease Institute, Boston, USA
5Massachusetts Eye and Ear Infirmary, Boston, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cotsarelis, G., Cheng, S. Z., Dong, G., Sun, T. T., & Lavker, R. M. (1989). Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell, 57(2), 201–209.

Davanger, M., & Evensen, A. (1971). Role of the pericorneal papillary structure in renewal of corneal epithelium. Nature, 229(5286), 560–561.

Schermer, A., Galvin, S., & Sun, T. T. (1986). Differentiation-related expression of a major 64 K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. The Journal of Cell Biology, 103(1), 49–62.

Puangsricharern, V., & Tseng, S. C. (1995). Cytologic evidence of corneal diseases with limbal stem cell deficiency. Ophthalmology, 102(10), 1476–1485.

Kolli, S., Ahmad, S., Lako, M., & Figueiredo, F. (2010). Successful clinical implementation of corneal epithelial stem cell therapy for treatment of unilateral limbal stem cell deficiency. Stem Cells, 28(3), 597–610.

Whitcher, J. P., Srinivasan, M., & Upadhyay, M. P. (2001). Corneal blindness: a global perspective. Bulletin of the World Health Organization, 79(3), 214–221.

Notara, M., Alatza, A., Gilfillan, J., et al. (2010). In sickness and in health: corneal epithelial stem cell biology, pathology and therapy. Experimental Eye Research, 90(2), 188–195.

Nishida, K., Yamato, M., Hayashida, Y., et al. (2004). Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. The New England Journal of Medicine, 351(12), 1187–1196.

Pellegrini, G., Traverso, C. E., Franzi, A. T., Zingirian, M., Cancedda, R., & De Luca, M. (1997). Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet, 349(9057), 990–993.

Tsai, R. J., Li, L. M., & Chen, J. K. (2000). Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. The New England Journal of Medicine, 343(2), 86–93.

Koizumi, N., Cooper, L. J., Fullwood, N. J., et al. (2002). An evaluation of cultivated corneal limbal epithelial cells, using cell-suspension culture. Investigative Ophthalmology & Visual Science, 43(7), 2114–2121.

Kinoshita, S., & Nakamura, T. (2004). Development of cultivated mucosal epithelial sheet transplantation for ocular surface reconstruction. Artificial Organs, 28(1), 22–27.

Nishida, K., Yamato, M., Hayashida, Y., et al. (2004). Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface. Transplantation, 77(3), 379–385.

Kolli, S., Ahmad, S., Lako, M., & Figueiredo, F. (2010). Successful clinical implementation of corneal epithelial stem cell therapy for treatment of unilateral limbal stem cell deficiency. Stem Cells, 28(3), 597–610.

Pauklin, M., Fuchsluger, T. A., Westekemper, H., Steuhl, K. P., & Meller, D. (2010). Midterm results of cultivated autologous and allogeneic limbal epithelial transplantation in limbal stem cell deficiency. Developments in Ophthalmology, 45, 57–70.

Shimazaki, J., Aiba, M., Goto, E., Kato, N., Shimmura, S., & Tsubota, K. (2002). Transplantation of human limbal epithelium cultivated on amniotic membrane for the treatment of severe ocular surface disorders. Ophthalmology, 109(7), 1285–1290.

Daya, S. M., Watson, A., Sharpe, J. R., et al. (2005). Outcomes and DNA analysis of ex vivo expanded stem cell allograft for ocular surface reconstruction. Ophthalmology, 112(3), 470–477.

Meyer-Blazejewska, E. A., Kruse, F. E., Bitterer, K., et al. (2010). Preservation of the limbal stem cell phenotype by appropriate culture techniques. Investigative Ophthalmology & Visual Science, 51(2), 765–774.

Nakamura, T., Inatomi, T., Sotozono, C., et al. (2006). Transplantation of autologous serum-derived cultivated corneal epithelial equivalents for the treatment of severe ocular surface disease. Ophthalmology, 113(10), 1765–1772.

Rama, P., Bonini, S., Lambiase, A., et al. (2001). Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation, 72(9), 1478–1485.

Schwab, I. R., Reyes, M., & Isseroff, R. R. (2000). Successful transplantation of bioengineered tissue replacements in patients with ocular surface disease. Cornea, 19(4), 421–426.

Grueterich, M., Espana, E. M., & Tseng, S. C. (2003). Modulation of keratin and connexin expression in limbal epithelium expanded on denuded amniotic membrane with and without a 3T3 fibroblast feeder layer. Investigative Ophthalmology & Visual Science, 44(10), 4230–4236.

Pellegrini, G., Golisano, O., Paterna, P., et al. (1999). Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. The Journal of Cell Biology, 145(4), 769–782.

Rheinwald, J. G., & Green, H. (1975). Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell, 6(3), 331–343.

Martin, M. J., Muotri, A., Gage, F., & Varki, A. (2005). Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nature Medicine, 11(2), 228–232.

Koizumi, N., Inatomi, T., Suzuki, T., Sotozono, C., & Kinoshita, S. (2001). Cultivated corneal epithelial stem cell transplantation in ocular surface disorders. Ophthalmology, 108(9), 1569–1574.

Omoto, M., Miyashita, H., Shimmura, S., et al. (2009). The use of human mesenchymal stem cell-derived feeder cells for the cultivation of transplantable epithelial sheets. Investigative Ophthalmology & Visual Science, 50(5), 2109–2115.

Nakamura, T., Inatomi, T., Sotozono, C., Amemiya, T., Kanamura, N., & Kinoshita, S. (2004). Transplantation of cultivated autologous oral mucosal epithelial cells in patients with severe ocular surface disorders. The British Journal of Ophthalmology, 88(10), 1280–1284.

Nakamura, T., Ang, L. P., Rigby, H., et al. (2006). The use of autologous serum in the development of corneal and oral epithelial equivalents in patients with Stevens-Johnson syndrome. Investigative Ophthalmology & Visual Science, 47(3), 909–916.

Jones, P. H., Harper, S., & Watt, F. M. (1995). Stem cell patterning and fate in human epidermis. Cell, 80(1), 83–93.

Pellegrini, G., Dellambra, E., Golisano, O., et al. (2001). p63 identifies keratinocyte stem cells. Proceedings of the National Academy of Sciences of the United States of America, 98(6), 3156–3161.

de Paiva, C. S., Chen, Z., Corrales, R. M., Pflugfelder, S. C., & Li, D. Q. (2005). ABCG2 transporter identifies a population of clonogenic human limbal epithelial cells. Stem Cells, 23(1), 63–73.

Grueterich, M., Espana, E. M., Touhami, A., Ti, S. E., & Tseng, S. C. (2002). Phenotypic study of a case with successful transplantation of ex vivo expanded human limbal epithelium for unilateral total limbal stem cell deficiency. Ophthalmology, 109(8), 1547–1552.

Sangwan, V. S., Matalia, H. P., Vemuganti, G. K., et al. (2006). Clinical outcome of autologous cultivated limbal epithelium transplantation. Indian Journal of Ophthalmology, 54(1), 29–34.

Madhira, S. L., Vemuganti, G., Bhaduri, A., Gaddipati, S., Sangwan, V. S., & Ghanekar, Y. (2008). Culture and characterization of oral mucosal epithelial cells on human amniotic membrane for ocular surface reconstruction. Molecular Vision, 14, 189–196.

Pauklin, M., Fuchsluger, T. A., Westekemper, H., Steuhl, K. P., & Meller, D. (2010). Midterm results of cultivated autologous and allogeneic limbal epithelial transplantation in limbal stem cell deficiency. Developments in Ophthalmology, 45, 57–70.

Baradaran-Rafii, A., Ebrahimi, M., Kanavi, M. R., et al. (2011). Midterm outcomes of autologous cultivated limbal stem cell transplantation with or without penetrating keratoplasty. Cornea, 29(5), 502–509.

Meyer-Blazejewska, E. A., Kruse, F. E., Bitterer, K., et al. (2010). Preservation of the limbal stem cell phenotype by appropriate culture techniques. Investigative Ophthalmology & Visual Science, 51(2), 765–774.

Inatomi, T., Nakamura, T., Kojyo, M., Koizumi, N., Sotozono, C., & Kinoshita, S. (2006). Ocular surface reconstruction with combination of cultivated autologous oral mucosal epithelial transplantation and penetrating keratoplasty. American Journal of Ophthalmology, 142(5), 757–764.

Nakamura, T., Inatomi, T., Sotozono, C., Koizumi, N., & Kinoshita, S. (2004). Successful primary culture and autologous transplantation of corneal limbal epithelial cells from minimal biopsy for unilateral severe ocular surface disease. Acta Ophthalmologica Scandinavica, 82(4), 468–471.

Nakamura, T., Koizumi, N., Tsuzuki, M., et al. (2003). Successful regrafting of cultivated corneal epithelium using amniotic membrane as a carrier in severe ocular surface disease. Cornea, 22(1), 70–71.

Li, W., Hayashida, Y., He, H., Kuo, C. L., & Tseng, S. C. (2007). The fate of limbal epithelial progenitor cells during explant culture on intact amniotic membrane. Investigative Ophthalmology & Visual Science, 48(2), 605–613.

Oie, Y., Hayashi, R., Takagi, R., et al. (2010). A novel method of culturing human oral mucosal epithelial cell sheet using post-mitotic human dermal fibroblast feeder cells and modified keratinocyte culture medium for ocular surface reconstruction. The British Journal of Ophthalmology, 94(9), 1244–1250.

Yokoo, S., Yamagami, S., Usui, T., Amano, S., & Araie, M. (2008). Human corneal epithelial equivalents for ocular surface reconstruction in a complete serum-free culture system without unknown factors. Investigative Ophthalmology & Visual Science, 49(6), 2438–2443.

Fukuda, K., Fujitsu, Y., Seki, K., Kumagai, N., & Nishida, T. (2003). Differential expression of thymus- and activation-regulated chemokine (CCL17) and macrophage-derived chemokine (CCL22) by human fibroblasts from cornea, skin, and lung. The Journal of Allergy and Clinical Immunology, 111(3), 520–526.

Zhang, Y. Q., Zhang, W. J., Liu, W., et al. (2008). Tissue engineering of corneal stromal layer with dermal fibroblasts: phenotypic and functional switch of differentiated cells in cornea. Tissue Engineering. Part A, 14(2), 295–303.

Ferraris, C., Chevalier, G., Favier, B., Jahoda, C. A., & Dhouailly, D. (2000). Adult corneal epithelium basal cells possess the capacity to activate epidermal, pilosebaceous and sweat gland genetic programs in response to embryonic dermal stimuli. Development, 127(24), 5487–5495.

Lindberg, K., Brown, M. E., Chaves, H. V., Kenyon, K. R., & Rheinwald, J. G. (1993). In vitro propagation of human ocular surface epithelial cells for transplantation. Investigative Ophthalmology & Visual Science, 34(9), 2672–2679.