Comparative Analysis of Control Schemes for DFIG-Based Wind Energy System

Brijesh Kumar1, Kanwarjit Singh Sandhu1, Rahul Sharma1
1Electrical Engineering, National Institute of Technology, Kurukshetra, India

Tóm tắt

This paper presents the comparative study of control techniques which are generally employed for doubly fed induction generator (DFIG)-based wind energy conversion systems (WECS). Vector control, direct torque control and direct power control schemes are mostly employed to control DFIG-based WECS. Therefore, this paper includes comparative analysis of vector control, direct torque control and direct power control as well as their derivative control schemes. This paper highlights the merits and demerits of different schemes on major aspects such as transient condition, dynamic response, steady-state response, power quality, their impact on power network and torque ripple in different operating and environmental conditions. The results of such control schemes have been compared to conclude the recent status and highlight the future prospective for DFIG-based WECS.

Tài liệu tham khảo

B.K. Bose, Global Energy Scenario and Impact of Power Electronics in 21st Century. IEEE Trans. Ind. Elect. 60(7), 2638–2651 (2013) M.J. Morshed, A. Fekih, A new fault ride-through control for DFIG-based wind energy systems. Electr. Power Syst. Res. 146, 258–269 (2017) B. Singh, N.K.S. Naidu, Direct Power Control of Single VSC-Based DFIG Without Rotor Position Sensor. IEEE Trans. on Ind. Applicat. 50(6), 4152–4163 (2014) Angala Parameswari, G, Habeebullah Sait, H. A comprehensive review of fault ride‐through capability of wind turbines with grid‐connected doubly fed induction generator. Int. Trans. Electr. Energ. Syst. 2020; etep12395. https://doi.org/10.1002/2050-7038.12395. H. Geng, G. Yang, Output Power Control for Variable-Speed Variable-Pitch Wind Generation Systems. IEEE Trans. on Energy Convers. 25(2), 494–503 (2010) R. Cardenas, R. Pena, S. Alepuz, G. Asher, Overview of control systems for the operation of DFIGs in wind energy applications. IEEE Trans. on Ind. Electron. 60(7), 2776–2798 (2013) H. Polinder, F. F. A. v. d. Pijl, G. d. Vilder, and P. J. Tavner, Comparison of direct-drive and geared generator concepts for wind turbines. IEEE Trans. on Energy Convers. 21(3), 725–733 (2006) H. Polinder, F. F. A. v. d. Pijl, G. d. Vilder, and P. Tavner (2005), Comparison of direct-drive and geared generator concepts for wind turbines," in IEEE International Conference on Electric Machines and Drives. 543–550. V.D. Colli, F. Marignetti, C. Attaianese, Analytical and multiphysics approach to the optimal design of a 10-MW DFIG for direct-drive wind turbines. IEEE Trans. Industr. Electron. 59(7), 2791–2799 (2012) P. Li, J. Wang, F. Wu, H. Li, Nonlinear controller based on state feedback linearization for series-compensated DFIG-based wind power plants to mitigate sub-synchronous control interaction. Int Trans Electr Energ Syst. 29, e2682 (2019) J.M. Espi, J. Castello, Wind Turbine generation system with optimized DC-link design and control. IEEE Trans. Industr. Electron. 60(3), 919–929 (2013) Y. Zhang, J. Hu, J. Zhu, Three-Vectors-based predictive direct power control of the doubly fed induction generator for wind energy applications. IEEE Trans. Power Electron. 29(7), 3485–3500 (2014) D. Zhi, L. Xu, Direct power control of DFIG with constant switching frequency and improved transient performance. IEEE Trans. Energy Convers. 22(1), 110–118 (2007) Y.H. Liu, J. Arrillaga, N.R. Watson, Addition of four-quadrant power controllability to multi-level VSC HVDC transmission. IET Gener. Transm. Distrib. 1(6), 872–878 (2007) R. Datta, V.T. Ranganathan, Variable-speed wind power generation using doubly fed wound rotor induction machine-a comparison with alternative schemes. IEEE Trans. Energy Convers. 17(3), 414–421 (2002) R. Pena, J.C. Clare, G.M. Asher, Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation. IEE Proc.,–Electr. Power Appl. 143(3), 231–241 (1996) R. Pena, J.C. Clare, G.M. Asher, A doubly fed induction generator using back-to-back PWM converters supplying an isolated load from a variable speed wind turbine. IEE Proc., Elect. Power Appl. 143(5), 380–387 (1996) R. Errouissi, A. Al-Durra, S.M. Muyeen, S. Leng, F. Blaabjerg, Offset-free direct power control of dfig under continuous-time model predictive control. IEEE Trans. Power Electron. 32(3), 2265–2277 (2017) G. Abad, J. Lopez, M.A. Rodriguez et al., Doubly Fed Induction Machine Modeling and Control for Wind Energy Generation Applications (Wiley, Hoboken, NJ, 2011) G. Abad, M.A. Rodriguez, G. Iwanski, J. Poza, Direct power control of doubly-fed-induction-generator-based wind turbines under unbalanced grid voltage. IEEE Trans. Power Electron. 25(2), 442–452 (2010) H. Akagi, H. Sato, Control and performance of a doubly-fed induction machine intended for a flywheel energy storage system. IEEE Trans. Power Electron. 17(1), 109–116 (2002) K.K. Jaladi, K.S. Sandhu, A new hybrid control scheme for minimizing torque and flux ripple for DFIG-based WES under random change in wind speed. Int. Trans. on Elect. Energy Sys. 29(4), e2818 (2019) I. Cadirci, M. Ermis, Double-output induction generator operating at subsynchronous and supersynchronous speeds: steady-state performance optimisation and wind-energy recovery. IEE Proc., B Electr. Power Appl. 139(5), 429–442 (1992) V.F. Mendes, C. V. d. Sousa, S. R. Silva, B. C. Rabelo, and W. Hofmann, , Modeling and Ride-through control of doubly fed induction generators during symmetrical voltage sags. IEEE Trans. on Energy Convers. 26(4), 1161–1171 (2011) S. Li, T.A. Haskew, K.A. Williams, R.P. Swatloski, Control of DFIG wind turbine with direct-current vector control configuration. IEEE Trans. on Sustain. Energy 3(1), 1–11 (2012) D. Santos-Martin, J.L. Rodriguez-Amenedo, S. Arnalte, Direct power control applied to doubly fed induction generator under unbalanced grid voltage conditions. IEEE Trans. Power Electron. 23(5), 2328–2336 (2008) E. Tremblay, S. Atayde, A. Chandra, Comparative study of control strategies for the doubly fed induction generator in wind energy conversion systems: a dsp-based implementation approach. IEEE Trans. on Sustain. Energy 2(3), 288–299 (2011) K.C. Wong, S.L. Ho, K.W.E. Cheng, Direct control algorithm for doubly fed induction generators in weak grids. IET Electr. Power Appl. 3(4), 371–380 (2009) X. Lie, P. Cartwright, Direct active and reactive power control of DFIG for wind energy generation. IEEE Trans. Energy Convers. 21(3), 750–758 (2006) M. Yamamoto, O. Motoyoshi, Active and reactive power control for doubly-fed wound rotor induction generator. IEEE Trans. Power Electron. 6(4), 624–629 (1991) J. Hu, J. Zhu, Y. Zhang, G. Platt, Q. Ma, D.G. Dorrell, Predictive direct virtual torque and power control of doubly fed induction generators for fast and smooth grid synchronization and flexible power regulation. IEEE Trans. Power Electron. 28(7), 3182–3194 (2013) B.C. Rabelo, W. Hofmann, J. L. d. Silva, R. G. d. Oliveira, and S. R. Silva, , Reactive power control design in doubly fed induction generators for wind turbines. IEEE Trans. on Ind. Electron. 56(10), 4154–4162 (2009) K.K. Jaladi, K.S. Sandhu, DC-link transient improvement of SMC-based hybrid control of DFIG-WES under asymmetrical grid faults. International Transactions on Electrical Energy Systems 29(4), e2633 (2018) M. Castilla, J. Miret, J. Matas, A. Borrell, L. G. d. Vicuna, Direct rotor current-mode control improves the transient response of doubly fed induction generator-based wind turbines. IEEE Trans. on Energy Convers. 25(3), 722–731 (2010) M. Rahimi, M. Parniani, Efficient control scheme of wind turbines with doubly fed induction generators for low-voltage ride-through capability enhancement. IET Renew. Power Gener. 4(3), 242–252 (2010) K.V. Shihabudheen, S.K. Raju, G.N. Pillai, Control for grid-connected DFIG-based wind energy system using adaptive neuro-fuzzy technique. Int Trans. Electr. Energ. Syst. 28, e2526 (2018) M. Mohseni, S.M. Islam, M.A.S. Masoum, Enhanced Hysteresis-based current regulators in vector control of DFIG wind turbines. IEEE Trans. Power. Electron. 26(1), 223–234 (2010) I. Takahashi and T. Noguchi (1986). A New Quick-Response and High-Efficiency Control Strategy of an Induction Motor. IEEE Transactions on Industry Applications. IA-22(5) 820–827. M. Depenbrock, Direct self-control (DSC) of inverter-fed induction machine. IEEE Trans. Power Electron. 3(4), 420–429 (1988) R. Datta, V.T. Ranganathan, Direct power control of grid-connected wound rotor induction machine without rotor position sensors. IEEE Trans. on Power Electr. 16(3), 390–399 (2001) T. Noguchi, H. Tomiki, S. Kondo, I. Takahashi, Direct power control of PWM converter without power-source voltage sensors. IEEE Trans. Ind. Appl. 34(3), 473–479 (1998) N.R.N. Idris, A.H.M. Yatim, Direct torque control of induction machines with constant switching frequency and reduced torque ripple. IEEE Trans. Industr. Electron. 51(4), 758–767 (2004) L. Yen-Shin, C. Jian-Ho, A new approach to direct torque control of induction motor drives for constant inverter switching frequency and torque ripple reduction. IEEE Trans. Energy Convers. 16(3), 220–227 (2001) C. B. Mayer (1992). High Response Control of Stator Watts and Vars for Large Wound Rotor Induction Motor Adjustable Speed Drives. IEEE Transactions on Industry Applications, vol. IA-19, no. 5, pp. 736–743. T.G. Habetler, F. Profumo, M. Pastorelli, L.M. Tolbert, Direct torque control of induction machines using space vector modulation. IEEE Trans. Ind. Appl. 28(5), 1045–1053 (1992) G.S. Buja, M.P. Kazmierkowski, Direct torque control of PWM inverter-fed AC motors–a survey. IEEE Trans. Industr. Electron. 51(4), 744–757 (2004) G.A. Smith, K.A. Nigim, Wind-energy recovery by a static Scherbius induction generator. IEE Proc. C Gener., Trans. Distrib. 128(6), 317–324 (1981) J. Zambada, "Field-oriented control for motors," in MachineDesign.com, February 16, 2013. B. Drury (2009). The Control Techniques Drives and Controls Handbook (2nd ed.), UK: Institution of Engineering and Technology. B. K. Bose (2006), Power Electronics and Motor Drives : Advances and Trends," Amsterdam Academic, p. 22. R. Datta and V. T. Ranganathan, "Decoupled control of active and reactive power for a grid-connected doubly-fed wound rotor induction machine without position sensors," in Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370), 1999, pp. 2623–2630 vol.4. N. Chilakapati, V.S. Ramsden, V. Ramaswamy, Performance evaluation of doubly-fed twin stator induction machine drive with voltage and current space vector control schemes. IEE Proc. Electr. Power Appl. 148(3), 287–292 (2001) A. Tapia, G. Tapia, J.X. Ostolaza, J.R. Saenz, Modeling and control of a wind turbine driven doubly fed induction generator. IEEE Trans. Energy Convers. 18(2), 194–204 (2003) A. Mullane, M.O. Malley, The inertial response of induction-machine-based wind turbines. IEEE Trans. Power Syst. 20(3), 1496–1503 (2005) J. Chen, W. Zhang, B. Chen, Y. Ma, Improved vector control of brushless doubly fed induction generator under unbalanced grid conditions for offshore wind power generation. IEEE Trans. Energy Convers. 31(1), 293–302 (2016) S. Yang, V. Ajjarapu, A speed-adaptive reduced-order observer for sensorless vector control of doubly fed induction generator-based variable-speed wind turbines. IEEE Trans. Energy Convers. 25(3), 891–900 (2010) R. Cardenas, R. Pena, J. Proboste, G. Asher, J. Clare, MRAS observer for sensorless control of standalone doubly fed induction generators. IEEE Trans. Energy Convers. 20(4), 710–718 (2005) G.D. Marques, D.M. Sousa, New sensorless rotor position estimator of a dfig based on torque calculations—stability study. IEEE Trans. Energy Convers. 27(1), 196–203 (2012) G. Tapia, A. Tapia, J.X. Ostolaza, Two alternative modeling approaches for the evaluation of wind farm active and reactive power performances. IEEE Trans. Energy Convers. 21(4), 909–920 (2006) G. Tapia, A. Tapia, J.X. Ostolaza, Proportional-integral regulator-based approach to wind farm reactive power management for secondary voltage control. IEEE Trans. Energy Convers. 22(2), 488–498 (2007) S. Chondrogiannis, M. Barnes, Stability of doubly-fed induction generator under stator voltage orientated vector control. IET Renew. Power Gener. 2(3), 170–180 (2008) R. Pena, R. Cardenas, J. Proboste, G. Asher, J. Clare, Sensorless control of doubly-fed induction generators using a rotor-current-based mras observer. IEEE Trans. Industr. Electron. 55(1), 330–339 (2008) A. Susperregui, G. Tapia, I. Zubia, J.X. Ostolaza, Sliding-mode control of doubly-fed generator for optimum power curve tracking. Electron. Lett. 46(3), 126–127 (2010) G.D. Marques, V.F. Pires, S. Sousa, D.M. Sousa, A DFIG sensorless rotor-position detector based on a hysteresis controller. IEEE Trans. Energy Convers. 26(1), 9–17 (2011) S. Ademi, M.G. Jovanovic, H. Chaal, W. Cao, A new sensorless speed control scheme for doubly fed reluctance generators. IEEE Trans. Energy Convers. 31(3), 993–1001 (2016) Y. Zhao, J. Chai, X. Sun, Speed-sensorless control for grid-connected doubly fed induction generators based on virtual synchronous generator. J. Eng. 2017(14), 2660–2665 (2017) G.D. Marques, D.M. Sousa, Air-gap-power-vector-based sensorless method for dfig control without flux estimator. IEEE Trans. Industr. Electron. 58(10), 4717–4726 (2011) M.F. Iacchetti, G.D. Marques, R. Perini, D.M. Sousa, Stator inductance self-tuning in an air-gap-power-vector-based observer for the sensorless control of doubly fed induction machines. IEEE Trans. Industr. Electron. 61(1), 139–148 (2014) G.D. Marques, D.M. Sousa, M.F. Iacchetti, Air-gap power-based sensorless control in a dfig connected to a DC link. IEEE Trans. Energy Convers. 30(1), 367–375 (2015) A.K. Jain, V.T. Ranganathan, Wound rotor induction generator with sensorless control and integrated active filter for feeding nonlinear loads in a stand-alone grid. IEEE Trans. Industr. Electron. 55(1), 218–228 (2008) D.G. Forchetti, G.O. Garcia, M.I. Valla, Adaptive observer for sensorless control of stand-alone doubly fed induction generator. IEEE Trans. Industr. Electron. 56(10), 4174–4180 (2009) G.D. Marques, M.F. Iacchetti, Sensorless frequency and voltage control in the stand-alone DFIG-DC system. IEEE Trans. Industr. Electron. 64(3), 1949–1957 (2017) G.D. Marques, D.M. Sousa, Sensorless direct slip position estimator of a DFIM based on the air gap pq vector—sensitivity study. IEEE Trans. Industr. Electron. 60(6), 2442–2450 (2013) D.D. Reigosa, F. Briz, C.B. Charro, A.D. Gioia, P. Garcia, J.M. Guerrero, Sensorless control of doubly fed induction generators based on rotor high-frequency signal injection. IEEE Trans. Ind. Appl. 49(6), 2593–2601 (2013) D.D. Reigosa, F. Briz, C. Blanco, J.M. Guerrero, Sensorless control of doubly fed induction generators based on stator high-frequency signal injection. IEEE Trans. Ind. Appl. 50(5), 3382–3391 (2014) R. Bhattarai, N. Gurung, S. Ghosh, S. Kamalasadan, Parametrically Robust dynamic speed estimation based control for doubly fed induction generator. IEEE Trans. Ind. Appl. 54(6), 6529–6542 (2018) R. Bhattarai, N. Gurung, A. Thakallapelli, S. Kamalasadan, Reduced-order state observer-based feedback control methodologies for doubly fed induction machine. IEEE Trans. Ind. Appl. 54(3), 2845–2856 (2018) S.K. Raju, G.N. Pillai, Design and implementation of type-2 fuzzy logic controller for dfig-based wind energy systems in distribution networks. IEEE Trans. Sustain. Energy 7(1), 345–353 (2016) Z. Miao, L. Fan, D. Osborn, S. Yuvarajan, Control of DFIG-based wind generation to improve interarea oscillation damping. IEEE Trans. Energy Convers. 24(2), 415–422 (2009) S. Shao, E. Abdi, F. Barati, R. McMahon, Stator-flux-oriented vector control for brushless doubly fed induction generator. IEEE Trans. Industr. Electron. 56(10), 4220–4228 (2009) H. Djadi, K. Yazid, M. Menaa, Parameters identification of a brushless doubly fed induction machine using pseudo-random binary signal excitation signal for recursive least squares method. IET Electr. Power Appl. 11(9), 1585–1595 (2017) G. Tapia, G. Santamaria, M. Telleria, A. Susperregui, Methodology for smooth connection of doubly fed induction generators to the grid. IEEE Trans. Energy Convers. 24(4), 959–971 (2009) L. Wang, X. Xie, Q. Jiang, H. Liu, Y. Li, Investigation of SSR in practical dfig-based wind farms connected to a series-compensated power system. IEEE Trans. Power Syst. 30(5), 2772–2779 (2015) Z. Wang, Y. Sun, G. Li, B.T. Ooi, Magnitude and frequency control of grid-connected doubly fed induction generator based on synchronised model for wind power generation. IET Renew. Power Gener. 4(3), 232–241 (2010) L. Yang, G.Y. Yang, Z. Xu, Z.Y. Dong, K.P. Wong, X. Ma, Optimal controller design of a doubly-fed induction generator wind turbine system for small signal stability enhancement. IET Gener. Transm. Distrib. 4(5), 579–597 (2010) L. Wang, D. Truong, Stability enhancement of DFIG-based offshore wind farm fed to a multi-machine system using a STATCOM. IEEE Trans. Power Syst. 28(3), 2882–2889 (2013) X. Lin, K. Xiahou, Y. Liu, Q.H. Wu, Design and hardware-in-the-loop experiment of multiloop adaptive control for DFIG-WT. IEEE Trans. Industr. Electron. 65(9), 7049–7059 (2018) M. Amer Saeed, H.M. Khan, A. Ashraf, S.A. Qureshi, Analyzing effectiveness of LVRT techniques for DFIG wind turbine system and implementation of hybrid combination with control schemes. Renew. Sustain. Energy Reviews 81, 2487–2501 (2018) X. T. Z. Garcia, B.; Terlizzi, A.; Pavlanin, and L. R.; Salvatore, "Comparison Between FOC and DTC strategies for Permanent Magnet," (http://advances.uniza.sk/index.php/AEEE/article/view/179). Advances in Electrical and Electronic Engineering, vol. 5, pp. 1–2, Mar. 2006. M.P.F. Kazmierkowski, L. Rodriguetz, M. J., Perez, and J. Leon, High performance motor drives. IEEE Trans. Ind. Electr. 5(3), 6–26 (2011) J. Rodriguez, J. Pontt, C. Silva, R. Huerta, H. Miranda, Simple direct torque control of induction machine using space vector modulation. Electron. Lett. 40(7), 412–413 (2004) A. Tripathi, A.M. Khambadkone, S.K. Panda, Torque ripple analysis and dynamic performance of a space vector modulation based control method for AC-drives. IEEE Trans. Power Electron. 20(2), 485–492 (2005) D. Casadei, G. Serra, K. Tani, Implementation of a direct control algorithm for induction motors based on discrete space vector modulation. IEEE Trans. Power Electron. 15(4), 769–777 (2000) C.L. Toh, N.R.N. Idris, A.H.M. Yatim, Constant and high switching frequency torque controller for DTC drives. IEEE Power Electron. Lett. 3(2), 76–80 (2005) C. Lascu, A.M. Trzynadlowski, A sensorless hybrid DTC drive for high-volume low-cost applications. IEEE Trans. Industr. Electron. 51(5), 1048–1055 (2004) B.B. Pimple, V.Y. Vekhande, B.G. Fernandes, Compensation of negative sequence stator flux of doubly-fed induction generator using polar voltage control-based direct torque control under unbalanced grid voltage condition. J. Eng. 2015(2), 78–85 (2015) L. Yen-Shin, L. Juo-Chiun, New hybrid fuzzy controller for direct torque control induction motor drives. IEEE Trans. Power Electron. 18(5), 1211–1219 (2003) L. Xiong, P. Li, J. Wang, High-order sliding mode control of DFIG under unbalanced grid voltage conditions. Int. J. Electr. Power Energy Sys. 117, 105608 (2020) L. Djilali, E.N. Sanchez, M. Belkheiri, Real-time implementation of sliding-mode field-oriented control for a DFIG-based wind turbine. Int. Trans. Electr. Energ. Syst. 28, e2539 (2018) C. Lascu, I. Boldea, F. Blaabjerg, Variable-structure direct torque control–a class of fast and robust controllers for induction machine drives. IEEE Trans. Industr. Electron. 51(4), 785–792 (2004) C. Lascu, I. Boldea, F. Blaabjerg, Very-low-speed variable-structure control of sensorless induction machine drives without signal injection. IEEE Trans. Ind. Appl. 41(2), 591–598 (2005) R. Bojoi, F. Farina, G. Griva, F. Profumo, A. Tenconi, Direct torque control for dual three-phase induction motor drives. IEEE Trans. Ind. Appl. 41(6), 1627–1636 (2005) G. Abad, M.Ã. Rodriguez, J. Poza, Two-Level VSC based predictive direct torque control of the doubly fed induction machine with reduced torque and flux ripples at low constant switching frequency. IEEE Trans. Power Electr. 23(3), 1050–1061 (2008) S.M.A. Cruz, G.D. Marques, P. F. C. Gonçalves, and M. F. Iacchetti, , Predictive torque and rotor flux control of a DFIG-DC System for torque ripple compensation and loss minimization. IEEE Trans. Ind. Electr. 65(12), 9301–9310 (2018) R. Datta and V. T. Ranganathan (1999), Method for direct control of active and reactive power from the rotor side for a grid connected doubly-fed slip-ring induction machine without position encoder," Indian Patient 797/MAS/99. R. Datta and V. T. Ranganathan (2000), Rotor side control of grid-connected wound rotor induction machine and its application to wind power generation, Ph.D dissertation, Dept. Elect. Eng., Indian Inst. Sci., Bangalore, India. P. Zhou, Y. He, D. Sun, Improved Direct power control of a DFIG-Based wind turbine during network unbalance. IEEE Trans. Power Electron. 24(11), 2465–2474 (2009) J. Hu, H. Nian, B. Hu, Y. He, Z.Q. Zhu, Direct active and reactive power regulation of dfig using sliding-mode control approach. IEEE Trans. Energy Convers. 25(4), 1028–1039 (2010) D. Chwa, K.B. Lee, Variable structure control of the active and reactive powers for a DFIG in wind turbines. IEEE Trans. Ind. Appl. 46(6), 2545–2555 (2018) H. Nian, Y. Song, P. Zhou, Y. He, Improved direct power control of a wind turbine driven doubly fed induction generator during transient grid voltage unbalance. IEEE Trans. Energy Convers. 26(3), 976–986 (2011) L. Shang, J. Hu, Sliding-mode-based direct power control of grid-connected wind-turbine-driven doubly fed induction generators under unbalanced grid voltage conditions. IEEE Trans. Energy Convers. 27(2), 362–373 (2012) J. Mohammadi, S. Vaez-Zadeh, S. Afsharnia, E. Daryabeigi, A combined vector and direct power control for DFIG-based wind turbines. IEEE Trans. Sustain. Energy 5(3), 767–775 (2014) N. Amiri, S.M. Madani, T.A. Lipo, H.A. Zarchi, An improved direct decoupled power control of doubly fed induction machine without rotor position sensor and with robustness to parameter variation. IEEE Trans. Energy Convers. 27(4), 873–884 (2012) J. Hu, H. Nian, H. Xu, Y. He, Dynamic modeling and improved control of DFIG under distorted grid voltage conditions. IEEE Trans. Energy Convers. 26(1), 163–175 (2011) A.J.S. Filho, E.R. Filho, Model-based predictive control applied to the doubly-fed induction generator direct power control. IEEE Trans. Sustain. Energy 3(3), 398–406 (2012) J. Hu, J. Zhu, D.G. Dorrell, Model-predictive direct power control of doubly-fed induction generators under unbalanced grid voltage conditions in wind energy applications. IET Renew. Power Gener. 8(6), 687–695 (2014) J. Hu, J. Zhu, D.G. Dorrell, Predictive direct power control of doubly fed induction generators under unbalanced grid voltage conditions for power quality improvement. IEEE Trans. Sustain. Energy 6(3), 943–950 (2015) M.K. Bourdoulis, A.T. Alexandridis, Direct power control of DFIG Wind systems based on nonlinear modeling and analysis. IEEE J. Emerg. Sel. Topics Power Electron. 2(4), 764–775 (2014) M.M. Baggu, B.H. Chowdhury, J.W. Kimball, Comparison of advanced control techniques for grid side converter of doubly-fed induction generator back-to-back converters to improve power quality performance during unbalanced voltage dips. IEEE J. Emerg. Sel. Topics in Power Electr. 3(2), 516–524 (2015) Jia Luo, Haoran Zhao, Shuning Gao, Mingzhe Han, "A Low Voltage Ride Through Strategy of DFIG based on Explicit Model Predictive Control", International Journal of Electrical Power & Energy Systems, Volume 119, 105783, 2020. H. Nian, P. Cheng, Z.Q. Zhu, Coordinated direct power control of DFIG system without phase-locked loop under unbalanced grid voltage conditions. IEEE Trans. Power Electron. 31(4), 2905–2918 (2016) S. Huang, Wu. Qiuwei, Y. Guo, F. Rong, Optimal active power control based on MPC for DFIG-based wind farm equipped with distributed energy storage systems. Int. J. Electr. Power Energy Syst. 113, 154–163 (2019) M.E. Zarei, C. V. Nicolás, and J. R. Arribas, Improved predictive direct power control of doubly fed induction generator during unbalanced grid voltage based on four vectors. IEEE J. Emerg. Sel. Topics Power Electron. 5(2), 695–707 (2017) R. A. d. Marchi, P. S. Dainez, F. J. V. Zuben, and E. Bim, A multilayer perceptron controller applied to the direct power control of a doubly fed induction generator. IEEE Trans. Sustain. Energy 5(2), 498–506 (2014)