Compact stable hypersurfaces with free boundary in convex solid cones with homogeneous densities

Springer Science and Business Media LLC - Tập 51 Số 3-4 - Trang 887-913 - 2014
Antonio Cañete1, César Rosales2
1Departamento de Matemática Aplicada I, Universidad de Sevilla, Sevilla, Spain
2Departamento de Geometría y Topología, Universidad de Granada, Granada, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bakry, D., Émery, M.: Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/1984. Lecture Notes in Math., vol. 1123, pp. 177–206. Springer, Berlin (1985) MR 889476 (88j:60131)

Barbosa, J.L., do Carmo, M.P.: Stability of hypersurfaces with constant mean curvature. Math. Z. 185(3), 339–353 (1984) MR 731682 (85k:58021c)

Barbosa, J.L., do Carmo, M.P., Eschenburg, J.: Stability of hypersurfaces of constant mean curvature in Riemannian manifolds. Math. Z. 197(1), 123–138 (1988) MR 917854 (88m:53109)

Barthe, F., Bianchini, C., Colesanti, A.: Isoperimetry and stability of hyperplanes for product probability measures. Ann. Mat. Pura Appl. (4) 192(2), 165–190 (2013) MR 3035134

Bayle, V.: Propriétés de concavité du profil isopérimétrique et applications. Ph.D. thesis, Institut Fourier, Grenoble (2003)

Cabré, X., Ros-Oton, X.: Sobolev and isoperimetric inequalities with monomial weights. J. Differ. Equ. 255(11), 4312–4336 (2013) MR 3097258

Cabré, X., Ros-Oton, X., Serra, J.: Euclidean balls solve some isoperimetric problems with nonradial weights. C. R. Math. Acad. Sci. Paris 350(21–22), 945–947 (2012) MR 2996771

Cabré, X., Ros-Oton, X., Serra, J.: Sharp isoperimetric inequalities via the ABP method. arXiv:1304.1724 (2013)

Cañete, A., Miranda, M., Vittone, D.: Some isoperimetric problems in planes with density. J. Geom. Anal. 20(2), 243–290 (2010) MR 2579510 (2011a:49102)

Cañete, A., Rosales, C.: The isoperimetric problem in solid cones with homogeneous densities (in preparation)

Carroll, C., Jacob, A., Quinn, C., Walters, R.: The isoperimetric problem on planes with density. Bull. Aust. Math. Soc. 78(2), 177–197 (2008) MR 2466858 (2009i:53051)

Castro, K., Rosales, C.: Free boundary stable hypersurfaces in manifolds with density and rigidity results. (2013) arXiv:1311.1952

Cheng, X., Mejia, T., Zhou, D.: Stability and compactness for complete $$f$$ f -minimal surfaces. Trans. Am. Math. Soc. arXiv:1210.8076 (to appear)

Dahlberg, J., Dubbs, A., Newkirk, E., Tran, H.: Isoperimetric regions in the plane with density $$r^p$$ r p . N. Y. J. Math. 16, 31–51 (2010) MR 2645984 (2011d:53011)

Díaz, A., Harman, N., Howe, S., Thompson, D.: Isoperimetric problems in sectors with density. Adv. Geom. 12, 589–619 (2012)

Doan, T.H.: Some calibrated surfaces in manifolds with density. J. Geom. Phys. 61(8), 1625–1629 (2011) MR 2802497 (2012e:53091)

Espinar, J.M.: Manifolds with density, applications and gradient Schrödinger operators. arXiv:1209.6162 (2012)

Fan, E.M.: Topology of three-manifolds with positive $$P$$ P -scalar curvature. Proc. Am. Math. Soc. 136(9), 3255–3261. (2008) MR 2407091 (2009c:53050)

Figalli, A., Indrei, E.: A sharp stability result for the relative isoperimetric inequality inside convex cones. J. Geom. Anal. 23(2), 938–969 (2013) MR 3023863

Figalli, A., Maggi, F.: On the isoperimetric problem for radial log-convex densities. Calc. Var. Partial Differ. Equ. 48(3–4), 447–489 (2013) MR 3116018

Gromov, M.: Isoperimetry of waists and concentration of maps. Geom. Funct. Anal. 13(1), 178–215 (2003) MR 1978494 (2004m:53073)

Ho, P.T.: The structure of $$\phi $$ ϕ -stable minimal hypersurfaces in manifolds of nonnegative $$P$$ P -scalar curvature. Math. Ann. 348(2), 319–332 (2010) MR 2672304

Howe, S.: The log-convex density conjecture and vertical surface area in warped products. arXiv:1107.4402 (2011)

Hsiung, C.-C.: Some integral formulas for closed hypersurfaces. Math. Scand. 2, 286–294 (1954) MR 0068236 (16,849j)

Impera, D., Rimoldi, M.: Stability properties and topology at infinity of $$f$$ f -minimal hypersurfaces. arXiv:1302.6160 (2013)

Lichnerowicz, A.: Variétés riemanniennes à tenseur C non négatif. C. R. Acad. Sci. Paris Sér. A-B 271, A650–A653 (1970) MR 0268812 (42 #3709)

Lichnerowicz, A.: Variétés kählériennes à première classe de Chern non negative et variétés riemanniennes à courbure de Ricci généralisée non negative. J. Differ. Geom. 6, 47–94 (1971/1972) MR 0300228 (45 #9274)

Lions, P.-L., Pacella, F.: Isoperimetric inequalities for convex cones. Proc. Am. Math. Soc. 109(2), 477–485 (1990) MR 1000160 (90i:52021)

Liu, G.: Stable weighted minimal surfaces in manifolds with nonnegative Bakry-Emery Ricci tensor. Comm. Anal. Geom. arXiv:1211.3770 (to appear)

Lott, J.: Some geometric properties of the Bakry-Émery-Ricci tensor. Comment. Math. Helv. 78(4), 865–883 (2003) MR 2016700 (2004i:53044)

Maderna, C., Salsa, S.: Sharp estimates of solutions to a certain type of singular elliptic boundary value problems in two dimensions. Appl. Anal. 12(4), 307–321 (1981) MR 653203 (83i:35062)

Milman, E.: Sharp isoperimetric inequalities and model spaces for curvature-dimension-diameter condition. arXiv:1108.4609 (2011)

Milman, E., Rotem, L.: Complemented Brunn-Minkowski inequalities and isoperimetry for homogeneous and non-homogeneous measures. arXiv:1308.5695 (2013)

Morgan, F.: Manifolds with density. Notices Am. Math. Soc. 52(8), 853–858 (2005) MR 2161354 (2006g:53044)

Morgan, F.: Myers’ theorem with density. Kodai Math. J. 29(3), 455–461 (2006) MR 2278776 (2007h:53043).

Morgan, F.: Geometric Measure Theory. A Beginner’s Guide, 4th edn. Elsevier/Academic Press, Amsterdam (2009) MR 2455580 (2009i:49001)

Morgan, F.: The Log-Convex Density Conjecture. Concentration, Functional Inequalities and Isoperimetry. Contemp. Math., vol. 545. Amer. Math. Soc., Providence, RI, pp. 209–211 (2011) MR 2858534

Morgan, F., Pratelli, A.: Existence of isoperimetric regions in $${\mathbb{R}}^n$$ R n with density. Ann. Glob. Anal. Geom. 43(4), 331–365 (2013) MR 3038539

Morgan, F., Ritoré, M.: Isoperimetric regions in cones. Trans. Am. Math. Soc. 354(6), 2327–2339 (2002) MR 1885654 (2003a:53089)

Palmer, B.:Stability of the Wulff shape. Proc. Am. Math. Soc. 126(12), 3661–3667 (1998) MR 1473676 (99b:58055)

Qian, Z.: Estimates for weighted volumes and applications. Quart. J. Math. Oxf. Ser. (2) 48(190), 235–242 (1997) MR 1458581 (98e:53058)

Rimoldi, M.: Rigidity results for Lichnerowicz Bakry-Emery Ricci Tensors. Ph.D. thesis, Università degli Studi di Milano (2011)

Ritoré, M., Rosales, C.: Existence and characterization of regions minimizing perimeter under a volume constraint inside Euclidean cones. Trans. Am. Math. Soc. 356(11), 4601–4622 (2004) MR 2067135 (2005g:49076)

Rosales, C., Cañete, A., Bayle, V., Morgan, F.: On the isoperimetric problem in Euclidean space with density. Calc. Var. Partial Differ. Equ. 31(1), 27–46 (2008) MR 2342613 (2008m:49212)

Sternberg, P., Zumbrun, K.: On the connectivity of boundaries of sets minimizing perimeter subject to a volume constraint. Comm. Anal. Geom. 7(1), 199–220 (1999) MR 1674097 (2000d:49062)

Taylor, J.E.: Crystalline variational problems. Bull. Am. Math. Soc. 84(4), 568–588. (1978) MR 0493671 (58 #12649)

Wei, G., Wylie, W.: Comparison geometry for the smooth metric measure spaces. In: Proceedings of the 4th ICCM, Hangzhou, China II, pp. 191–202 (2007)

Wei, G., Wylie, W.: Comparison geometry for the Bakry-Emery Ricci tensor. J. Differ. Geom. 83(2), 377–405 (2009) MR 2577473 (2011a:53064)

Wente, H.C.: A note on the stability theorem of J. L. Barbosa and M. Do Carmo for closed surfaces of constant mean curvature. Pac. J. Math. 147(2), 375–379 (1991) MR 1084716 (92g:53010)

Winklmann, S.: A note on the stability of the Wulff shape. Arch. Math. (Basel) 87(3), 272–279 (2006) MR 2258927 (2007e:53078)