Compact quartz-enhanced photoacoustic sensor for ppb-level ambient NO2 detection by use of a high-power laser diode and a grooved tuning fork

Photoacoustics - Tập 25 - Trang 100325 - 2022
Shangzhi Li1,2, Juncheng Lu3, Zhijin Shang1,2, Xiangbao Zeng4, Yupeng Yuan4, Hongpeng Wu1,2, Yufeng Pan1,2, Angelo Sampaolo5, Pietro Patimisco5, Vincenzo Spagnolo1,5, Lei Dong1,2
1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, PR China
2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, PR China
3Institute of Information Optics, Zhejiang Normal University, Jinhua 321004, PR China
4Chongqing Acoustic-Optic-Electronic Co. Ltd, China Electronics Technology Group, Chongqing 401332, PR China
5PolySense Lab-Dipartimento Interateneo di Fisica, University and Politecnico of Bari, Via Amendola 173, Bari, Italy

Tài liệu tham khảo

Seinfeld, 1998 Vasilkov, 2009, Impact of tropospheric nitrogen dioxide on the regional radiation budget, Atmos. Chem. Phys., 9, 6389, 10.5194/acp-9-6389-2009 Solomon, 1999, On the role of nitrogen dioxide in the absorption of solar radiation, J. Geophys. Res, 104, 12047, 10.1029/1999JD900035 Beauchamp, 2004, Short-term measurements of CO, NO, NO2, organic compounds and PM10 at a motorway location in an Austrian valley, Atmos. Environ., 38, 2511, 10.1016/j.atmosenv.2004.01.032 Carslaw, 2004, Investigating the potential importance of primary NO2 emissions in a street canyon, Atmos. Environ., 38, 3585, 10.1016/j.atmosenv.2004.03.041 Carslaw, 2005, Estimations of road vehicel primary NO2 exhaust emission fractions using monitoring data in London, Atmos. Environ., 39, 167, 10.1016/j.atmosenv.2004.08.053 Dunlea1, 2007, Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment, Atmos. Chem. Phys., 7, 569 Wu, 2009, Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode, Appl. Phys. B: Lasers Opt., 94, 85, 10.1007/s00340-008-3308-8 Villena, 2011, Development of a new long path absorption photometer (LOPAP) instrument for the sensitive detection of NO2 in the atmosphere, Atmos. Meas. Tech., 4, 1663, 10.5194/amt-4-1663-2011 Kebabian, 2005, Detection of nitrogen dioxide by cavity attenuated phase shift spectroscopy, Anal. Chem., 77, 724, 10.1021/ac048715y Matsumi, 2010, Fluorescence detection of atmospheric nitrogen dioxide using a blue light-emitting diode as an excitation source, Appl. Opt., 49, 3762, 10.1364/AO.49.003762 Richter, 2005, Increase in tropospheric nitrogen dioxide over China observed from space, Nature, 437, 129, 10.1038/nature04092 Matsumi, 2001, High sensitivity instrument for measuring atmospheric NO2, Anal. Chem., 73, 5485, 10.1021/ac010552f Ren, 2014, Single-QCL-based absorption sensor for simultaneous trace-gas detection of CH4 and N2O, Appl. Phys. B, 117, 245, 10.1007/s00340-014-5828-8 Pollack, 2010, Evaluation of ultraviolet light-emitting diodes for detection of atmospheric NO2 by photolysis-chemiluminescence, J. Atmos. Chem., 65, 111, 10.1007/s10874-011-9184-3 Peltola, 2015, Parts-per-trillion-level detection of nitrogen dioxide by cantilever-enhanced photo-acoustic spectroscopy, Opt. Lett., 40, 2933, 10.1364/OL.40.002933 Garnica, 2000, method for the ultrasensitive detection of NO and NO2 using atmospheric pressure laser ionization mass spectrometry, Anal. Chem., 72, 5639, 10.1021/ac000816i Li, 2004, Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at Whiteface Mountain using a dual tunable diode laser system, J. Geophys. Res.: Atmos., 109, 10.1029/2003JD004091 Qiao, 2021, Ppt level carbon monoxide detection based on light-induced thermoelastic spectroscopy exploring custom quartz tuning forks and a mid-infrared QCL, Opt. Express, 29, 25100, 10.1364/OE.434128 Qiao, 2021, Trace gas sensing based on single-quartz-enhanced photoacoustic–photothermal dual spectroscopy, Opt. Lett., 46, 2449, 10.1364/OL.423801 Lang, 2021, Quartz tuning fork-based demodulation of an acoustic signal induced by photo-thermo-elastic energy conversion, Photoacoustics, 22, 10.1016/j.pacs.2021.100272 Ma, 2013, QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL, Opt. Express, 21, 1008, 10.1364/OE.21.001008 Yin, 2021, Near-infrared laser photoacoustic gas sensor for simultaneous detection of CO and H2S, Opt. Express, 29, 34258, 10.1364/OE.441698 Harder, 1997, Ground‐based comparison of NO2, H2O, and O3 measured by long‐path and in situ techniques during the 1993 Tropospheric OH Photochemistry Experiment, J. Geophys. Res., 102, 6227, 10.1029/96JD01729 Thornton, 2000, Atmospheric NO2: in situ laser-induced fluorescence detection at parts per trillion mixing ratios, Anal. Chem., 72, 528, 10.1021/ac9908905 Ehlers, 2014, Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry incorporating an optical circulator, Opt. Lett., 39, 279, 10.1364/OL.39.000279 Li, 2013, Continuous-wave cavity ringdown spectroscopy based on the control of cavity reflection, Opt. Express, 21, 17961, 10.1364/OE.21.017961 Fuchs, 2009, A sensitive and versatile detector for atmospheric NO2 and NOx based on blue diode laser cavity ring-down spectroscopy, Environ. Sci. Technol., 43, 7831, 10.1021/es902067h Wada, 2005, Continuous wave cavity ring-down spectroscopy measurement of NO2 mixing ratios in ambient air, Analyst, 130, 1595, 10.1039/b511115c Yin, 2017, Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser, Sens. Actuators B Chem., 247, 329, 10.1016/j.snb.2017.03.058 Pan, 2020, Compact and highly sensitive NO2 photoacoustic sensor for environmental monitoring, Molecules, 25, 1201, 10.3390/molecules25051201 Yi, 2011, Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz enhanced photoacoustic spectroscopy, Opt. Lett., 36, 481, 10.1364/OL.36.000481 Wei, 2021, High and flat spectral responsivity of quartz tuning fork used as infrared photodetector in tunable diode laser spectroscopy, Appl. Phys. Rev., 8, 10.1063/5.0062415 Zheng, 2020, Quartz-enhanced photoacoustic spectroscopy employing pilot line manufactured custom tuning forks, Photoacoustics, 17, 10.1016/j.pacs.2019.100158 Pushkarsky, 2006, Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers, Proc. Natl. Acad. Sci. USA, 103, 10846, 10.1073/pnas.0604238103 Kosterev, 2005, Applications of quartz tuning forks in spectroscopic gas sensing, Rev. Sci. Instrum., 76, 10.1063/1.1884196 Kosterev, 2002, Quartz-enhanced photoacoustic spectroscopy, Opt. Lett., 27, 1902, 10.1364/OL.27.001902 Dong, 2010, QEPAS spectrophones: design, optimization, and performance, Appl. Phys. B: Lasers Opt., 100, 627, 10.1007/s00340-010-4072-0 Patimisco, 2018, Recent advances in quartz enhanced photoacoustic sensing, Appl. Phys. Rev., 5, 10.1063/1.5013612 Wu, 2017, Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring, Nat. Commun., 8, 15331, 10.1038/ncomms15331 Hu, 2021, Long-distance in-situ methane detection using near-infrared light-induced thermo-elastic spectroscopy, Photoacoustics, 21, 10.1016/j.pacs.2020.100230 Liu, 2009, Off-beam quartz-enhanced photoacoustic spectroscopy, Opt. Lett., 34, 1594, 10.1364/OL.34.001594 Yin, 2020, Ppb-level SO2 photoacoustic sensors with a suppressed absorption-desorption effect by using a 7.41 μm external-cavity quantum cascade laser, Acs Sens., 5, 549, 10.1021/acssensors.9b02448 Zheng, 2015, Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED, Sens. Actuators B Chem., 208, 173, 10.1016/j.snb.2014.11.015 Zheng, 2016, Scattered light modulation cancellation method for sub-ppb-level NO2 detection in a LD-excited QEPAS system, Opt. Express, 24, A752, 10.1364/OE.24.00A752 The HITRAN Database: 〈http://www.hitran.com〉. Patimisco, 2019, Tuning forks with optimized geometries for quartz-enhanced photoacoustic spectroscopy, Opt. Express, 27, 1401, 10.1364/OE.27.001401 Patimisco, 2016, Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing, Sens. Actuators B Chem., 227, 539, 10.1016/j.snb.2015.12.096 Li, 2019, Ppb-level quartz-enhanced photoacoustic detection of carbon monoxide exploiting a surface grooved tuning fork, Anal. Chem., 91, 5834, 10.1021/acs.analchem.9b00182 Wu, 2015, Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1582 nm DFB laser, Sens. Actuators B Chem., 221, 666, 10.1016/j.snb.2015.06.049 Wu, 2019, Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibration, Sens. Actuators B Chem., 297, 10.1016/j.snb.2019.126753 Wu, 2015, Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing, Appl. Phys. Lett., 107, 10.1063/1.4930995 China National Environmental Monitoring Center. 〈http://www.cnemc.cn/〉.