Compact and efficient structure of 8-bit S-box for lightweight cryptography
Tài liệu tham khảo
Hatzivasilis, 2018, A review of lightweight block ciphers, J. Cryptogr. Eng., 11, 141, 10.1007/s13389-017-0160-y
Sadhukhan, 2017, An evaluation of lightweight block ciphers for resource-constrained applications: Area, performance, and security, J. Hardw. Syst. Secur., 1, 203, 10.1007/s41635-017-0021-2
Daemen, 2002, The design of Rijndael: AES-the advanced encryption standard, 10.1007/978-3-662-04722-4_1
Aoki, 2001, Camellia: A 128-bit block cipher suitable for multiple platforms-design and analysis, 39
T. Shirai, K. Shibutani, T. Akishita, S. Moriai, T. Iwata, The 128-bit block cipher CLEFIA (extended abstract), in: Proc. International Workshop on Fast Software Encryption, in: LNCS, vol. 4593, Luxembourg, 2007, pp. 181-195.
Daemen, 2000
Bogdanov, 2007, PRESENT: An ultra lightweight block cipher, 450
W. Wu, L. Zhang, A lightweight block cipher, in: Proc. Applied Cryptography and Network Security, 2011, Nerja, Spain, in: LNCS, vol. 6715, pp. 327-344.
J. Borghoff, et al. PRINCE-a low-latency block cipher for pervasive computing applications, in: Proc. 18th International Conference on the Theory and Application of Cryptology and Information Security (ASIACRYPT), in: LNCS, vol. 7658, 2012, Beijing, China, pp. 208-225.
Das, 2014, Halka: a lightweight, software friendly block cipher using ultra-lightweight 8-bit S-box
R. Tse, S. Kit Wong, J. Markku, The SM4 block cipher algorithm and its modes of operations, https://tools.ietf.org/html/draft-ribose-cfrg-sm4-10.
W. Stein, D. Joyner, SAGE: System for algebra and geometry experimentation, Available at http://www.sagemath.org.
Farwa, 2016, A highly nonlinear S-box based on a fractional linear transformation, Springer Plus, 5, 1, 10.1186/s40064-016-3298-7
Razaq, 2018, A novel technique for the construction of safe substitution boxes based on cyclic and symmetric groups, Secur. Commun. Netw., 2018, 1, 10.1155/2018/4987021
Tian, 2017, Chaotic S-box: Intertwining logistic map and bacterial foraging optimization, Math. Probl. Eng., 2017, 1
Khan, 2019, A novel cryptographic substitution box design using Gaussian distribution, IEEE Access, 7, 15999, 10.1109/ACCESS.2019.2893176
Shuai, 2019, S-boxes construction based on the cayley graph of the symmetric group for UASNs, IEEE Access, 7, 38826, 10.1109/ACCESS.2019.2906222
Asif Khan, 2018, A chaos-based substitution box (S-box) design with improved differential approximation probability (DP), Iran. J. Sci. Technol. Trans. Electr. Eng., 219
Isa, 2016, Construction of cryptographically strong S-boxes inspired by bee waggle dance, New Gener. Comput., 34, 221, 10.1007/s00354-016-0302-2
Rafiq, 2019, Construction of new S-boxes based on triangle groups and its applications in copyright protection, Multimedia Tools Appl., 78, 15527, 10.1007/s11042-018-6953-x
Muhammad Ali, 2019, A new construction of confusion component of block ciphers, Multimedia Tools Appl., 78, 32585, 10.1007/s11042-019-07866-w
Dey, 2018, A smart review and two new techniques using 4-bit Boolean functions for cryptanalysis of 4-bit crypto S-boxes, Int. J. Comput. Appl., 2018, 1
Ahmad, 2018, ABC optimization based construction of strong substitution-boxes, Wirel. Pers. Commun., 101, 1715, 10.1007/s11277-018-5787-1
Zahid, 2019, An innovative design of substitution-boxes using cubic polynomial mapping, Symmetry, 11, 1, 10.3390/sym11030437
A.H. Zahid, M.J. Arshad, Construction of lightweight S-boxes using feistel and MISTY structures, in: Proc. 22nd International Conference on Selected Areas in Cryptography, Sackville, NB, Canada, in: LNCS, vol .9566, 2015, pp. 373-393.
M. Ullrich, C. De Canniere, S. Indesteege, O. Kucuk, N. Mouha, B. Preneel, Finding optimal bitsliced implementations of 4*4-Bit S-boxes, in: Proc. Symmetric Key Encryption Workshop, Copenhagen, DK, 2011, pp. 1-20.
G. Grosso, G. Leurent, F.X. Standaert, K. Varici, LS-designs: Bitslice encryption for efficient masked software implementations, in: Proc. 21st International Workshop on Fast Software Encryption, London, UK, in: LNCS, vol. 8540, 2014, pp. 18-37.
Shahzad, 2019, Construction of new S-box using action of quotient of the modular group for multimedia security, Secur. Commun. Netw., 2019, 1, 10.1155/2019/2847801
Lambic, 2018, S-box design method based on improved onedimensional discrete chaotic map, J. Inf. Telecommun., 2, 181
Khan, 2016, Construction of S-box based on chaotic boolean functions and its application in image encryption, Neural Comput. Appl., 27, 677, 10.1007/s00521-015-1887-y
B. Gerard, V. Grosso, M. Naya-Plasencia, F.X. Standaert, Block ciphers that are easier to mask: how far can we go?, in: Proc. 15th International Workshop on Cryptographic Hardware and Embedded Systems-CHES, Santa Barbara, CA, USA, in: LNCS, vol. 8086, 2013, pp. 383-399.
Gondal, 2014, A scheme for obtaining secure S-boxes based on chaotic baker’s map, 3D Res., 5, 1, 10.1007/s13319-014-0017-4
Anees, 2015, A technique for designing substitution box based on van der pol oscillator, Wirel. Pers. Commun., 82, 1497, 10.1007/s11277-015-2295-4
Jakimoski, 2011, Composite field GF(((22)2)2) advanced encryption standard (AES) S-box with algebraic normal form representation in the subfield inversion, IET Circuits Devices Syst., 5, 471, 10.1049/iet-cds.2010.0435
A. Reyhani-Masoleh, M. Taha, D. Ashmawy, New area record for the AES combined S-box/inverse S-box, in: Proc. 25th IEEE Symbosium on Computer Arithmetic, Amherst, MA, USA, 2018, pp. 145–152.
N. Mentens, L. Batina, B. Preneel, I. Verbauwhede, A systematic evaluation of compact hardware implementations for the Rijndael S-box, in: Proc. The Cryptographers’ Track at the RSA Conference, San Francisco, CA, USA, LNCS, vol. 3376, 2005, pp. 323–333.
Zhang, 2004, High-speed VLSI architectures for the AES algorithm, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 12, 957, 10.1109/TVLSI.2004.832943
Monteiro, 2015, Low-power secure S-box circuit using charge-sharing symmetric adiabatic logic for advanced encryption standard hardware design, IET Circuits Devices Syst., 9, 362, 10.1049/iet-cds.2014.0150
Reyhani-Masoleh, 2018, Smashing the implementation records of AES S-box, IACR Trans. Cryptogr. Hardware Embedded Syst., 2018, 298, 10.46586/tches.v2018.i2.298-336
Rashidi, 2013, Implementation of an optimized and pipelined combinational logic Rijndael S-box on FPGA, 41
Maximov, 2019, New circuit minimization techniques for smaller and faster AES Sboxes, IACR Trans. Cryptogr. Hardware Embedded Syst., 2019, 91, 10.46586/tches.v2019.i4.91-125
R. Ueno, N. Homma, Y. Nogami, T. Aoki, Highly efficient GF(28) inversion circuit based on redundant GF arithmetic and its application to AES design, in: Proc. 17th International Workshop on Cryptographic Hardware and Embedded Systems-CHES, Saint-Malo, France, LNCS vol. 9293, 2015, pp. 63–80.
Canright D., A very compact S-box for AES, in: Proc. 7th International Workshop on Cryptographic Hardware and Embedded Systems-CHES, Edinburgh, UK, LNCS vol. 3659, 2005, pp. 441–455.
Y. Nogami, K. Nekado, T. Toyota, N. Hongo, Y. Morikawa, Mixed bases for efficient inversion in F(((22)2)2) and conversion matrices of subBytes of AES, in: Proc. 17th International Workshop on Cryptographic Hardware and Embedded Systems-CHES, Santa Barbara, USA, LNCS vol. 6225, 2010, pp. 234–247.
Ueno, 2019, Highly efficient GF(28) inversion circuit based on hybrid GF representations, J. Cryptogr. Eng., 9, 101, 10.1007/s13389-018-0187-8
Tillich, 2008, Area, delay, and power characteristics of standard-cell implementations of the AES S-box, J. Signal Process. Syst., 50, 251, 10.1007/s11265-007-0158-2
A. Satoh, S. Morioka, K. Takano, S. Munetoh, A compact Rijndael hardware architecture with S-box optimization, in: Proc. 7th International Conference on the Theory and Application of Cryptology and Information Security (ASIACRYPT), Gold Coast, Australia, 2001, pp. 239–254.
Ahmad, 2013, Low-power compact composite eld AES S-box/inv S-box design in 65 nm CMOS using novel XOR gate, INTEGRATION VLSI journal, 46, 333, 10.1016/j.vlsi.2012.06.002
M. Mozaffari-Kermani, A. Reyhani-Masoleh, A low-cost S-box for the advanced encryption standard using normal basis, in: Proc. IEEE International Conference on Electro/Information Technology, Windsor, ON, Canada, 2009, pp. 52–55.
Zhang, 2006, On the optimum constructions of composite field for the AES algorithm, IEEE Trans. Circuits Syst. II, 53, 1153, 10.1109/TCSII.2006.882217
Jeon, 2010, A compact memory-free architecture for the AES algorithm using resource sharing methods, J. Circuits Syst. Comput., 19, 1109, 10.1142/S0218126610006633
J. Boyar, R. Peralta, Technique with applications to cryptology, in: Proc. 9th International Symposium SEA: International Symposium on Experimental Algorithms, Ischia Island, Naples, Italy, LNCS, vol. 6049, 2010, pp. 178–189.
Belazi, 2016, Efficient cryptosystem approaches: Sboxes and permutation-substitution-based encryption, Nonlinear Dynam., 87, 337, 10.1007/s11071-016-3046-0
Matsui M., Linear cryptanalysis method for DES cipher, in: Proc. EUROCRYPT: Workshop on the Theory and Application of Cryptographic Techniques, Lofthus, Norway, LNCS, vol. 765, 1994, pp. 386–397.
Carlet, 2007, Nonlinearities of S-boxes, Finite Fields Appl., 13, 121, 10.1016/j.ffa.2005.07.003
F. Chabaud, S. Vaudenay, Links between differential and linear cryptanalysis, in: Proc. EUROCRYPT: Workshop on the Theory and Application of Cryptographic Techniques, New York, USA, LNCS, vol. 950, 1995, pp. 356–365.
Boss, 2017, Strong 8-bit Sboxes with efficient masking in hardware extended version, J. Cryptogr. Eng., 7, 149, 10.1007/s13389-017-0156-7
Biham, 1991, Differential cryptanalysis of DES-like cryptosystems, J. Cryptol., 4, 3, 10.1007/BF00630563
A.F. Webster, S.E. Tavares, On the design of S-boxes, in: Proc. Advances in Cryptology-CRYPTO, Berlin, LNCS, vol. 218, 1986, pp. 523–534.
Knudsen L.R., Truncated and higher order differentials, in: Proc. International Workshop on Fast Software Encryption, Leuven, Belgium, LNCS, vol. 1008, 1995, pp. 196–211.
Carlet C., On known and new differentially uniform functions, in: Proc. Australasian Conference on Information Security and Privacy, Melbourne, Australia, LNCS, vol. 6812, 2011, pp. 1–15.
Jakimoski, 2001, Chaos and cryptography: block encryption ciphers based on chaotic maps, IEEE Trans. Circuits Syst. I, 48, 163, 10.1109/81.904880
Gangadari, 2018
Paar, 1994
B., 2020, Efficient and flexible hardware structures of the 128-bit CLEFIA block cipher, IET Comput. Digit. Tech., 14, 69, 10.1049/iet-cdt.2019.0157
C. Beierle, J. Jean, S. Kolbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki, P. Sasdrich, S.M. Sim, The SKINNY family of block ciphers and its low-latency variant MANTIS, in: Proc. 36th Advances in Cryptology-CRYPTO, Santa Barbara, CA, USA, LNCS, vol. 9815, 2016, pp. 123–153.
F. Standaert, G. Piret, G. Rouvroy, J. Quisquater, J. Legat, ICEBERG : An involutional cipher efficient for block encryption in reconfigurable hardware, in: Proc. 11th International Workshop on Fast Software Encryption, Delhi, India, LNCS, vol. 3017, 2004, pp. 279–298.
P. Barreto, V. Rijmen, The Khazad legacy-level block cipher, in: Proc. First open NESSIE Workshop, Leuven, Belgium, 2000, pp. 1–15.
Grosso, 2015
V. Rijmen, P. Barreto, The WHIRLPOOL hash function, Submitted to NESSIE, Cryptologia, Vol 30, No. 1, 2001, pp. 55-67.
Morioka, 2004, A 10 Gbps full-AES crypto design with a twisted-BDD S-box architecture, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 12, 686, 10.1109/TVLSI.2004.830936