Cộng đồng nấm men có thể nuôi cấy và nấm giống nấm men trong môi trường nước ven bờ mặn vượt trội ở Vịnh Ả Rập xung quanh Qatar

Antonie van Leeuwenhoek - Tập 115 - Trang 609-633 - 2022
Rashmi Fotedar1, Mark Chatting2, Anna Kolecka3, Aisha Zeyara1, Amina Al Malki1, Ridhima Kaul4, Sayed J. Bukhari1, Mohammed Abdul Moaiti1, Eric J. Febbo5, Teun Boekhout3,6, Jack W. Fell7
1Department of Genetic Engineering, Biotechnology Centre, Ministry of Municipality and Environment, Doha, Qatar
2Environmental Science Centre, Qatar University, Doha, Qatar
3Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
4Weill Cornell Medical College in Qatar, Doha, Qatar
5ExxonMobil Upstream Research Company, Houston, USA
6Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, Netherlands
7Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Key Biscayne, USA

Tóm tắt

Báo cáo này là cuộc điều tra đầu tiên về đa dạng sinh học nấm men từ vùng nước ven bờ mặn vượt trội ở Vịnh Ả Rập xung quanh Qatar. Nấm men và nấm giống nấm men đã được nuôi cấy từ nước biển lấy mẫu ở 13 khu vực ven bờ xung quanh Qatar trong vòng 2 năm (tháng 12 năm 2013 – tháng 9 năm 2015). Tám trăm bốn mươi hai mẫu đơn thuộc 82 loài đại diện cho hai ngành, tức là Ascomycota (23 chi) và Basidiomycota (16 chi) đã được xác định bằng phương pháp giải trình tự phân tử. Kết quả cho thấy rằng vùng nước ven bờ của môi trường biển mặn vượt trội tại Qatar có một quần thể đa dạng các loài nấm men, phần lớn trong số đó đã được báo cáo từ các nguồn trên cạn, lâm sàng và thủy sinh tại nhiều nơi trên thế giới. Năm loài, cụ thể là Candida albicans, C. parapsilosis, C. tropicalis, Pichia kudriavzevii và Meyerozyma guilliermondii (n = 252/842; 30% mẫu đơn) được biết đến là những tác nhân gây bệnh cơ hội quan trọng ở người. Mười lăm loài thuộc chín chi (n = 498/842; 59%) và 12 loài thuộc bảy chi (n = 459/842; 55%) là các loài nấm men phân hủy hydrocarbon và các loài chỉ thị ô nhiễm, tương ứng. Nấm men thuộc ngành Ascomycetes chiếm ưu thế (66.38%; 559/842) so với các đối tác thuộc ngành Basidiomycetes (33.6%; 283/842). Các chi nấm men được phân lập nhiều nhất là Candida (28%; 236/842) (ví dụ, C. aaseri, C. boidinii, C. glabrata, C. intermedia, C. oleophila, C. orthopsilosis, C. palmioleophila, C. parapsilosis, C. pseudointermedia, C. rugopelliculosa, C. sake, C. tropicalis và C. zeylanoides), Rhodotorula (12.7%; 107/842), Naganishia (8.4%; 71/842), Aureobasidium (7.4%; 62/842), Pichia (7.3%; 62/842) và Debaryomyces (6.4%; 54/842). Tổng cộng mười một loài nấm men (n = 38) được phân lập trong nghiên cứu này được báo cáo lần đầu tiên từ môi trường biển. Kiểm tra hóa học cho thấy rằng bảy trong số 13 địa điểm có mức tổng hợp hydrocarbon dầu mỏ (TPH) dao động từ 200 đến 900 µg/L, trong khi 6 địa điểm cho thấy mức TPH cao hơn (> 1000–21000 µg/L). Kết quả cho thấy rằng cấu trúc và mật độ cộng đồng nấm men chịu tác động bởi các yếu tố vật lý-hóa học khác nhau, cụ thể là carbon hữu cơ tổng số, carbon hữu cơ hòa tan và lưu huỳnh.

Từ khóa

#nấm men #nấm giống nấm men #đa dạng sinh học #môi trường biển #ô nhiễm hydrocarbon

Tài liệu tham khảo

Ahearn DG, Crow SA (1980) Yeasts from the North Sea and Amoco Cadiz oil. Bot Mar 23: 125–128. Ahearn DG, Crow SA (1986) Fungi and hydrocarbons in the marine environment. The Biology of Marine Fungi. 11–18 Al-Ghadban AN, El-Sammak A (2005) Sources, distribution and composition of the suspended sediments, Kuwait Bay, Northern Arabian Gulf. J Arid Environ 60:647–661 Al-Ghadban AN, Al-Majed N, Al-Muzaini S (2002) The state of marine pollution in Kuwait: Northern Arabian Gulf. Technology 8:7–26 Al-Sarawi MA, Massoud MS, Khader SR (2002) Recent trace metal pollution in bottom sediments of Sulaibikhat Bay, Kuwait. Technology 8:38–50 Al-Thani RF, Yasseen BT (2021) Microbial Ecology of Qatar, the Arabian Gulf: Possible Roles of Microorganisms. Front Mar Sci 8:1–23 Amend A, Burgaud G, Cunliffe M, et al (2019) Fungi in the marine environment: Open questions and unsolved problems. MBio10 01189–18 Anand, A., Zeyara, A., Al Malaki, A., et al. (2016). Isolation and identification of potentially pathogenic vibrio species from qatari coastal seawaters, in Proceedings of the Qatar Foundation Annual Research Conference Proceedings Volume 2016 EESP2323 Hamad bin Khalifa University Press (HBKU Press), Ar Rayyan Azovsky AI (2011) Species–area and species–sampling effort relationships: disentangling the effects. Ecograph 34:18–30 Boekhout T, Fonseca Á, Sampaio JP, Bandoni RJ, Fell JW, Kwon-Chung KJ (2011) Discussion of teleomorphic and anamorphic basidiomycetous yeasts. The Yeasts. Elsevier, pp 1339–1372. https://doi.org/10.1016/B978-0-444-52149-1.00100-2 Boekhout T, Fotedar R, Kolecka A, Fell J (2016) March. Fungal diversity in the Arabian Gulf surrounding Qatar: new species of yeasts and molds. In Qatar Foundation Annual Research Conference Proceedings. Hamad bin Khalifa University Press (HBKU Press) EEPP2198 Bogusławska-Wąs E, Dąbrowski W (2001) The seasonal variability of yeasts and yeast-like organisms in water and bottom sediment of the Szczecin Lagoon. Int J Hyg Environ Health 203:451–458 Botha A (2006) Yeast in soil. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 221–240 Boz DT, Yalçın HT, Çorbacı CC et al (2015) Screening and molecular characterization of polycyclic aromatic hydrocarbons degrading yeasts/Polisiklik aromatik hidrokarbonları parçalayan mayaların taranması ve moleküler karakterizasyonu. Turkish J Biochem 40:105–110 Brandao E, Turchetti B, Diolaiuti G et al (2010) Yeast and yeast-like diversity in the southernmost glacier of Europe (Calderone Glacier, Apennines, Italy). FEMS Microbiol Ecol 72:354–369 Brandão LR, Libkind D, Vaz AB et al (2011) Yeasts from an oligotrophic lake in Patagonia (Argentina): diversity, distribution and synthesis of photoprotective compounds and extracellular enzymes. FEMS Microbiol Ecol 76:1–13 Brook MC, Al Shoukri S, Amer KM et al (2006) Physical and environmental setting of the Arabian Peninsula and surrounding seas. Policy Perspectives for Ecosystem and Water Management in the Arabia Peninsula. UNESCO Doha and United Nations University, Hamilton, Ontario Buck JD (1977) Candida albicans In Bacterial indicators/health hazards associated with water. ASTM International, Pennsylvania Buck JD, Bubucis PM, Combs TJ (1977) Occurrence of human-associated yeasts in bivalve shellfish from Long Island Sound. Appl Environ Microbiol 33:370–378 Butinar L, Santos S, Spencer-Martins I et al (2005a) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244:229–234 Butinar L, Sonjak S, Zalar P, Plemenitaš A, Gunde-Cimerman N (2005) Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Botanica Marina. https://doi.org/10.1515/BOT.2005.007 Buzzini P, Turk M, Perini L et al (2017) Yeasts in polar and subpolar habitats in yeasts in natural ecosystems diversity. Springer, Cham, pp 331–365 Buzzini P, Turchetti B, Yurkov A (2018) Extremophilic yeasts: the toughest yeasts around? Yeast 35:487–497 Carlson RE, Simpson J (1996) A coordinator’s guide to volunteer lake monitoring methods. North Am Lake Manag Soc 96:305 Chatting M, Smyth D, Al-Maslamani I et al (2018) Nesting ecology of hawksbill turtles, Eretmochelys imbricata, in an extreme environmental setting. PloS one 13:e0203257 Chi ZM, Liu G, Zhao S et al (2010) Marine yeasts as biocontrol agents and producers of bio-products. Appl Microbiol Biotechnol 86:1227–1241 Coelho MA, Almeida JM, Martins IM et al (2010) The dynamics of the yeast community of the Tagus river estuary: testing the hypothesis of the multiple origins of estuarine yeasts. Antonie Van Leeuwenhoek 98:331–342 de Almeida JM (2005) Yeast community survey in the Tagus estuary. FEMS Microbiol Ecol 53:295–303 De Leo F, Giudice AL, Alaimo C et al (2019) Occurrence of the black yeast Hortaea werneckii in the Mediterranean Sea. Extremophiles 23:9–17 Deak T (2006) Environmental factors influencing yeasts. Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 155–174 Diaz-Munoz G, Montalvo-Rodriguez R (2005) Halophilic Black Yeast Hortaea werneckii in the Cabo Rojo Solar Salterns: its first record for this extreme environment in Puerto Rico. Carib J Sci 41:360–365 Dix NJ, Webster J (1995) Fungal ecology. Chapman and Hall, London Eaton AD, Clesceri LS, Rice EW et al (2005) APHA: standard methods for the examination of water and wastewater, Centennial. APHA, AWWA, WEF, Washington El Gammal MAM, Nageeb M, Al-Sabeb S (2017) Phytoplankton abundance in relation to the quality of the coastal water–Arabian Gulf, Saudi Arabia. Egypt J Aquat Res 43:275–282 Fell JW (1961) A new species of Saccharomyces isolated from a subtropical estuary. Antonie Van Leeuwenhoek 27:27–30 Fell JW (1976) Yeasts in oceanic regions. In: Jones EBG (ed) Recent advances in aquatic mycology. Elek Science, London, pp 93–124 Fell JW (2012) Yeasts in marine environments. In: Jones EBG, Pang K-L (eds) Marine fungi and fungal-like organisms. Walter de Gruyter, Berlin, pp 91–102 Fell JW, van Uden N (1963) Yeasts in marine environments. In: Oppenheimer CH (ed) Symposium on marine microbiology. Thomas, Springfield, pp 329–340 Fell JW, Ahearn DG, Meyers SP et al (1960) Isolation of yeasts from Biscayne Bay, Florida and adjacent benthic areas 1, 2. Limnol Oceanogr 5:366–371 Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:1351–1371 Fell JW, Statzell-Tallman A, Scorzetti G et al (2011) Five new species of yeasts from fresh water and marine habitats in the Florida Everglades. Antonie Van Leeuwenhoek 99:533–549 Fonseca Á, Sampaio JP, Inácio J, Fell JW (2000) Emendation of the basidiomycetous yeast genus Kondoa and the description of Kondoa aeria sp. nov. Antonie Van Leeuwenhoek 77:293–302 Fotedar R, Stoeck T, Filker S et al (2016) Description of the halophile Euplotes qatarensis nov. species (Ciliophora, Spirotrichea, Euplotida) isolated from the hypersaline Khor Al-Adaid Lagoon in Qatar. J Eukaryot Microbiol 63:578–590 Fotedar R, Kolecka A, Boekhout T, Fell JW et al (2018a) Naganishia qatarensis sp. nov., a novel basidiomycetous yeast species from a hypersaline marine environment in Qatar. Int J Syst Evol Microbiol 68:2924–2929 Fotedar R, Kolecka A, Boekhout T, Fell JW, Al-Malki A, Zeyara A, Marri MA (2018) Fungal diversity of the hypersaline Inland Sea in Qatar. Botanica Marina 61(6):595–609. https://doi.org/10.1515/bot-2018-0048 Fotedar R, Fell JW, Boekhout T, Kolecka A et al (2019a) Cystobasidium halotolerans sp. nov., a novel basidiomycetous yeast species isolated from the Arabian Gulf. Int J Syst Evol Microbiol 69:839–845 Fotedar R, Kolecka A, Boekhout T, Fell JW et al (2019b) Kondoa qatarensis fa, sp. nov., a novel yeast species isolated from marine water in Qatar. Int J Syst Evol Microbiol 69:486–492 Fotedar R, Sandoval-Denis M, Kolecka A, Zeyara A et al (2019c) Toxicocladosporium aquimarinum sp. nov. and Toxicocladosporium qatarense sp. nov., isolated from marine waters of the Arabian Gulf surrounding Qatar. Int J Syst Evol Microbiol 69:2992–3000 Fotedar R, Caldwell ME, Sankaranarayanan K, Al-Zeyara A et al (2020a) Ningiella ruwaisensis gen. nov., sp. nov., a member of the family Alteromonadaceae isolated from marine water of the Arabian Gulf. Int J Syst Evol Microbiol 70:130–4138 Fotedar R, Caldwell ME, Sankaranarayanan K, Al-Zeyara A et al (2020b) Ningiella ruwaisensis gen. nov., sp. nov., a member of the family Alteromonadaceae isolated from marine water of the Arabian Gulf. Int J Syst Evol Microbiol 70:4130–4138 Fotedar Rashmi, Sankaranarayanan Krithivasan, Caldwell Matthew E, Zeyara Aisha et al (2021) Reclassification of Facklamia ignava, Facklamia sourekii and Facklamia tabacinasalis as Falseniella ignava gen. nov., comb. nov., Hutsoniella sourekii gen. nov., comb. nov., and Ruoffia tabacinasalis gen. nov., comb. nov., and description of Ruoffia halotolerans sp. nov., isolated from hypersaline Inland Sea of Qatar. Antonie van Leeuwenhoek 114(8):1181–1193. https://doi.org/10.1007/s10482-021-01587-7 Fotedar R, Boekhout T, Houbraken J (2014) Aspergillus salwaensis, A novel ochratoxin producing species from Qatar. In Qatar Foundation Annual Research Conference Proceedings Volume 2014 Issue 1 (Vol. 2014, No. 1, p. EEPP0094). Hamad bin Khalifa University Press (HBKU Press). Fotedar, R. (2013) Identification of bacteria from the marine environment surrounding Qatar. In Proceedings of the Qatar Foundation Annual Research Forum Proceedings Volume 2013 EEP-074 (Ar Rayyan: Hamad bin Khalifa University Press (HBKU Press)). https://doi.org/10.5339/qfarf.2013.EEP-074 Friedman DZ, Schwartz IS (2019) Emerging fungal infections: new patients, new patterns, and new pathogens. J Fungi 5:67 Gargouri B, Mhiri N, Karray F et al (2015a) Isolation and characterization of hydrocarbon-degrading yeast strains from petroleum contaminated industrial wastewater. Biomed Res Int 2015:929424. https://doi.org/10.1155/2015/929424 Giordano M, Norici A, Hell R (2005) Sulfur and phytoplankton: acquisition, metabolism and impact on the environment. New Phytol 166:371–382 Gargouri B, Mhiri N, Karray F, Aloui F, Sayadi S (2015) Isolation and characterization of hydrocarbon-degrading yeast strains from petroleum contaminated industrial wastewater. BioMed Res Int 3:929424 Gostinčar C, Grube MDe Hoog S, Zalar P, Gunde-Cimerman N (2009) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 71:2–11 Gunde-Cimerman N, Plemenitaš A (2006) Ecology and molecular adaptations of the halophilic black yeast Hortaea werneckii. Life in extreme environments. Springer, Dordrecht, pp 177–185 Gunde-Cimerman N, Zalar P (2014) Extremely halotolerant and halophilic fungi inhabit brine in solar salterns around the globe. Food Technol Biotechnol 52:170–179 Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitaš A (2000) Hypersaline waters in salterns–natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240 Gunde-Cimerman N, Frisvad JC, Zalar P, Plemenitas A (2005) Halotolerant and halophilic fungi. Biodiversity of Fungi: Their Role in Human Life (Deshmukh SK & Rai MK, eds) Gunde-Cimerman N, Oren A, Plemenitaš A, eds (2006) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya (Vol. 9). Springer Science & Business Media Hagler AN (2006) Yeasts as indicators of environmental quality. In: Péter Gábor, Rosa Carlos (eds) Biodiversity and ecophysiology of yeasts. Springer-Verlag, Berlin, pp 515–532. https://doi.org/10.1007/3-540-30985-3_21 Hagler AN, Mendonça-Hagler LC (1981) Yeasts from marine and estuarine waters with different levels of pollution in the state of Rio de Janeiro, Brazil. Appl Environ Microbiol 41:173–178 Hagler AN Ahearn DG (1987) Ecology of aquatic yeasts. In: (A.H. Rose and J.S. Harrison, eds.) The yeasts, Vol 2, Yeasts and the Environment. Academic Press, London 181–205 Hassett BT, Vonnahme TR, Xuefeng Peng EB, Jones G, Heuzé C (2020) Global diversity and geography of planktonic marine fungi. Botanica Marina 63(2):121–139. https://doi.org/10.1515/bot-2018-0113 Hinzelin F, Lectard P, Pelt JM (1979) Yeast ecology in both fluvial and saline continental ecosystems [France; Lorraine, Moselle basin, pollution]. Revue de Mycologie (France). Jones EG (2000) Marine fungi: some factors influencing biodiversity. Fung Divers 4:53–73 Jones EG, Suetrong S, Sakayaroj J, Bahkali AH et al (2015) Classification of marine ascomycota, basidiomycota, blastocladiomycota and chytridiomycota. Fungal Divers 73:1–72 Jones EG, Pang KL, Abdel-Wahab MA, Scholz B et al (2019) An online resource for marine fungi. Fungal Divers 96:347–433 Kathiresan K, Alikunhi NM, Subramanian M (2012) Yeasts in marine and estuarine environments. J Yeast Fungal Res 3:74–82 Kock N, Lynn G (2012) Lateral collinearity and misleading results in variance-based SEM: An illustration and recommendations. J Assoc Inf Syst 13:546–580 Kurtzman CP (2011) Discussion of teleomorphic and anamorphic ascomycetous yeasts and yeast-like taxa. The yeasts. Elsevier, pp 293–307. https://doi.org/10.1016/B978-0-444-52149-1.00013-6 Kurtzman C, Fell JW, Boekhout T (eds) (2011) The yeasts: a taxonomic study. Elsevier, Amsterdam Kurtzman CP, Pichia EC, Hansen emend. Kurtzman (1998) In Kurtzman CP, Fell JW. (eds.) The Yeasts: A Taxonomic Study, 4th ed, Elsevier, Amsterdam 73–352 Kutty SN, Philip R (2008) Marine yeasts—a review. Yeast 25:v465-483 Libkind D, Brizzio S, Ruffini A et al (2003) Molecular characterization of carotenogenic yeasts from aquatic environments in Patagonia, Argentina. Antonie Van Leeuwenhoek 84:313–322 Libkind D, Moliné M, Sampaio JP, Van Broock M (2009) Yeasts from high-altitude lakes: influence of UV radiation. FEMS Microbiol Ecol 69:353–362 Libkind D, Buzzini P, Turchetti B, Rosa CA (2017) Yeasts in continental and seawater. Yeasts in natural ecosystems: diversity. Springer, Cham, pp 1–61 Liu XZ, Wang QM, Theelen B, Groenewald M et al (2015a) Phylogeny of tremellomycetous yeasts and related dimorphic and filamentous basidiomycetes reconstructed from multiple gene sequence analyses. Stud Mycol 81:1–26 Liu XZ, Wang QM, Göker M, Groenewald M et al (2015b) Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 81:85–147 Loganathana K, Al Sulaitia HA, Bukharib SJ, Farda AK et al (2019) Distribution of salinity and trace elements in surface seawater of the Arabian Gulf surrounding the State of Qatar. Desalin Water Treat 143:102–110 Maciel NO, Johann S, Brandão LR et al (2019) Occurrence, antifungal susceptibility, and virulence factors of opportunistic yeasts isolated from Brazilian beaches. Mem Inst Oswaldo Cruz 14:114 Massoud MS, Al-Abdali F, Al-Ghadban AN (1998) The status of oil pollution in the Arabian Gulf by the end of 1993. Environ Int 24:11–22 Medeiros AO, Kohler LM, Hamdan JS, Missagia BS et al (2008) Diversity and antifungal susceptibility of yeasts from tropical freshwater environments in Southeastern Brazil. Water Res 42:3921–3929 Mnge P, Okeleye BI, Vasaikar SD, Apalata T (2017) Species distribution and antifungal susceptibility patterns of Candida isolates from a public tertiary teaching hospital in the Eastern Cape Province, South Africa. Braz J Med Biol Res 15:50 Moges B, Bitew A, Shewaamare A (2016) Spectrum and the in vitro antifungal susceptibility pattern of yeast isolates in Ethiopian HIV patients with oropharyngeal candidiasis. Int J Microbiol. https://doi.org/10.1155/2016/3037817 Mokhtarnejad L, Arzanlou M, Babai-Ahari A, Di Mauro S et al (2016) Characterization of basidiomycetous yeasts in hypersaline soils of the Urmia Lake National Park. Iran Extremophiles 20:915–928 Monapathi ME, Bezuidenhout CC, Rhode OH (2017) Water quality and antifungal susceptibility of opportunistic yeast pathogens from rivers. Water Sci Technol 75:1319–1331 Monapathi ME, Bezuidenhout CC, James Rhode OH (2020) Aquatic yeasts: diversity, characteristics and potential health implications. J Water Health 18:91–105 Monapathi M, Bezuidenhout C, Rhode O (2020b) Physico-chemical parameters and culturable yeast diversity in surface water: a consequence of pollution. Water SA 46:593–601 Montes de Oca R, Salem AZ, Kholif AE et al (2016) Yeast: description and structure. Yeast Addit Anim Prod 2016:4–13 MOOPAM (2010) Manual of oceanographic observation and pollutant analyses methods, 4th edn. ROPME Publishing, kuwait Nagahama T (2006) Yeast biodiversity in freshwater, marine and deep-sea environments. Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 241–262 Nagano Y, Nagahama T (2012) Fungal diversity in deep-sea extreme environments. Fungal Ecol 5:463–471 Naser HA (2014) Marine ecosystem diversity in the Arabian Gulf: threats and conservation. In: Grillo Oscar (ed) Biodiversity: the dynamic balance of the planet. InTech. https://doi.org/10.5772/57425 Neethu CS, Saravanakumar C, Purvaja R, Robin RS, Ramesh R (2019) Oil-spill triggered shift in indigenous microbial structure and functional dynamics in different marine environmental matrices. Sci Rep 9:1–13 Noori R, Tian F, Berndtsson R, Abbasi MR et al (2019) Recent and future trends in sea surface temperature across the Persian Gulf and Gulf of Oman. PLoS ONE 14:0212790 Norkrans B (1966) Studies on marine occurring yeasts: growth related to pH, NaCl concentration and temperature. Arch Mikrobiol 54:374–392 Opulente DA, Langdon QK, Buh KV, Haase MA et al (2019) Pathogenic budding yeasts isolated outside of clinical settings. FEMS Yeast Res 19:032 Overton EB, Ashton BM, Miles MS (2004) Historical polycyclic aromatic and petrogenic hydrocarbon loading in Northen Central Gulf of Mexico shelf sediments. Mar Pollut Bull 49:557–563 Péter G, Takashima M, Čadež N (2017) Yeast habitats: different but global. Yeasts in natural ecosystems: ecology. Springer, Cham, pp 39–71 PrasannaKumar C, Velmurugan S, Subramanian K, Pugazhvendan SR et al (2020) DNA barcoding analysis of more than 1000 marine yeast isolates reveals previously unrecorded species. BioRxiv Pucci G, Tiedemann MC, Acuña A, Pucci O (2011) Change in bacterial diversity after oil spill in Argentina. Importance Biol Interact Stud Biodivers 1:91–108 Quigg A, Al-Ansi M, Al Din NN, Wei CL et al (2013) Phytoplankton along the coastal shelf of an oligotrophic hypersaline environment in a semi-enclosed marginal sea: Qatar (Arabian Gulf). Cont Shelf Res 60:1–16 Rashid MI, Mujawar LH, Shahzad T, Almeelbi T et al (2016) Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 183:26–41 Raspor P, Zupan J (2006) Yeasts in extreme environments. Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 371–417 Richer R (2008) Conservation in Qatar: impacts of increasing industrialization. CIRS Occasional Paper 2, Doha, Qatar: Center for International and Regional Studies Richer R (2009) Conservation in Qatar: impacts of increasing industrialization. CIRS Occasional Paper 2, Doha, Qatar: Center for International and Regional Studies Rosa CA, Resende MA, Barbosa FA, Morais PB et al (1995) Yeast diversity in a mesotrophic lake on the karstic plateau of Lagoa Santa, MG-Brazil. Hydrobiologia 308:103–108 Sampaio JP (2011) Rhodotorula Harrison (1928) in the yeasts. Elsevier, Amsterdam Scorzetti G, Fell JW, Fonseca A, Statzell-Tallman A (2002) Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast Res 2:495–517 Sheppard C, Al-Husiani M, Al-Jamali F, Al-Yamani F et al (2010) The Gulf: a young sea in decline. Mar Pollut Bull 60:13–38 Simard RE, Blackwood AC (1971a) Ecological studies on yeasts in the St Lawrence River. Can J Microbiol 17:353–357 Simard RE, Blackwood AC (1971b) Yeasts from the St Lawrence River. Can J Icrobiol 17:197–203 Sláviková E, Vadkertiová R (1997) Seasonal occurrence of yeasts and yeast-like organisms in the river Danube. Antonie Van Leeuwenhoek 72:77–80 Sláviková E, Vadkertiová R, Kocková-Kratochvílová A (1992) Yeasts isolated from artificial lake waters. Can J Microbiol 38:1206–1209 Smith R, Purnama A, Al-Barwani HH (2007) Sensitivity of hypersaline Arabian Gulf to seawater desalination plants. Appl Math Model 31:2347–2354 Spencer JFT, Spencer DM (1997) Ecology: where yeasts live. In: Spencer John F. T, Spencer Dorothy M (eds) Yeasts in natural and artificial habitats. Springer, Berlin, pp 33–58. https://doi.org/10.1007/978-3-662-03370-8_4 Stavrou AA, Lackner M, Lass-Flörl C, Boekhout T (2019) The changing spectrum of Saccharomycotina yeasts causing candidemia: phylogeny mirrors antifungal susceptibility patterns for azole drugs and amphothericin B. FEMS Yeast Res 19:037 Stielow JB, Lévesque CA, Seifert KA, Meyer W et al (2015) One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia Mol Phylogeny Evol Fungi 35(1):242–263. https://doi.org/10.3767/003158515X689135 Tanghe A, Prior B, Thevelein JM (2006) Yeast responses to stresses. Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 175–195 Tisthammer KH, Cobian GM, Amend AS (2016) Global biogeography of marine fungi is shaped by the environment. Fungal Ecol 19:39–46 Uddin S, Gevao B, Al-Ghadban AN, Nithyanandan M et al (2012) Acidification in Arabian Gulf-Insights from pH and temperature measurements. J Environ Monit 14:1479–1482 Uetake J, Yoshimura Y, Nagatsuka N, Kanda H (2012) Isolation of oligotrophic yeasts from supraglacial environments of different altitude on the Gulkana Glacier (Alaska). FEMS Microbiol Ecol 82:279–286 Van Wyk DA, Bezuidenhout CC, Rhode OH (2012) Diversity and characteristics of yeasts from water sources in the North West Province, South Africa. Water Sci Technol Water Supply 12:422–430 Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246 Visagie CM, Varga J, Houbraken J, Meijer M et al (2014) Ochratoxin production and taxonomy of the yellow aspergilli (Aspergillus section Circumdati). Stud Mycol 78:1–61 Vu D, Groenewald M, Szöke S, Cardinali G et al (2016) DNA barcoding analysis of more than 9000 yeast isolates contributes to quantitative thresholds for yeast species and genera delimitation. Stud Mycol 85:91–105 Wang QM, Yurkov AM, Lumbsch HT, Leavitt SD et al (2015a) Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud Mycol 81:149–189 Wang QM, Groenewald M, Takashima M, Theelen B et al (2015b) Phylogeny of yeasts and related filamentous fungi within Pucciniomycotina determined from multigene sequence analyses. Stud Mycol 81:27–53 White TJ, Bruns T, Lee SJWT, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. PCR Protocols: A guide to Methods and Applications, 315–322 Zajc J, Zalar P, Gunde-Cimerman N (2017) Yeasts in hypersaline habitats. Yeasts in natural ecosystems: diversity. Springer, Cham, pp 293–329 Zalar P, Kocuvan MA, Plemenitaš A, Gunde-Cimerman N (2005) Halophilic black yeasts colonize wood immersed in hypersaline water. Botanica Marina. https://doi.org/10.1515/BOT.2005.042 Zimmerman NB, Vitousek PM (2012) Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape. PNAS 109:13022–13027 Zur morphologie, biologie und systematik der kahmpilze, der Monilia candida Hansen und des soorerregers. G. Fischer