Common fixed points for multivalued generalized contractions on partial metric spaces

Hassen Aydi1, Mujahid Abbas2, Calogero Vetro3
1Universite de Sousse
2Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, South Africa
3Università degli Studi di Palermo, Dipartimento di Matematica e Informatica, Palermo, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abbas, M., Nazir, T., Romaguera, S.: Fixed point results for generalized cyclic contraction mappings in partial metric spaces. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. 106, 287–297 (2012)

Aubin, J.P.: Applied abstract analysis. Wiley, New York (1977)

Aubin, J.P., Siegel, J.: Fixed points and stationary points of dissipative multivalued maps. Proc. Am. Math. Soc. 78, 391–398 (1980)

Altun, I., Sola, F., Simsek, H.: Generalized contractions on partial metric spaces. Topol. Appl. 157, 2778–2785 (2010)

Aydi, H.: Some fixed point results in ordered partial metric spaces. J. Nonlinear Sci. Appl. 4(2), 210–217 (2011)

Aydi, H.: Fixed point results for weakly contractive mappings in ordered partial metric spaces. J. Adv. Math. Stud. 4(2), 1–12 (2011)

Aydi, H.: Common fixed points for four maps in ordered partial metric spaces. Fasc. Math. 49, 15–31 (2012)

Aydi, H., Abbas, M., Vetro, C.: Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces. Topol. Appl. 159, 3234–3242 (2012)

Aydi, H., Hadj Amor, S., Karapinar, E.: Berinde Type generalized contractions on partial metric spaces. Abstr. Appl. Anal. Article ID 312479, p 20 (2012)

Aydi, H., Vetro, C., Sintunavarat, W., Kumam, P.: Coincidence and fixed points for contractions and cyclical contractions in partial metric spaces. Fixed Point Theory Appl. 2012, 124 (2012)

Baskaran, R., Subrahmanyam, P.V.: A note on the solution of a class of functional equations. Appl. Anal. 22, 235–241 (1986)

Bellman, R.: Methods of Nonliner Analysis. Vol. II, vol. 61 of Mathematics in Science and Engineering. Academic Press, New York (1973)

Bellman, R., Lee, E.S.: Functional equations in dynamic programming. Aequationes Math. 17, 1–18 (1978)

Bhakta, T.C., Mitra, S.: Some existence theorems for functional equations arising in dynamic programming. J. Math. Anal. Appl. 98, 348–362 (1984)

Daffer, P.Z., Kaneko, H.: Fixed points of generalized contractive multi-valued mappings. J. Math. Anal. Appl. 192, 655–666 (1995)

Di Bari, C., Vetro, P.: Common fixed points for $$\psi $$ -contractions on partial metric spaces, to appear in Hacet. J. Math. Stat.

Di Bari, C., Vetro, P.: Fixed points for weak $$\varphi $$ -contractions on partial metric spaces. Int. J. Eng. 1, 5–13 (2011)

Dube, L.S., Singh, S.P.: On multivalued contraction mapping. Bull. Math. Soc. Set. Math. R. S. Roumanie 14, 307–310 (1970)

Hardy, G.E., Rogers, T.D.: A generalization of fixed point theorem of Reich. Canad. Math. Bull. 16, 201–206 (1973)

Hu, T.: Fixed point theorems for multivalued mappings. Canad. Math. Bull. 23, 193–197 (1980)

Iseki, K.: Multivalued contraction mappings in complete metric spaces. Rend. Semin. Mat. Univ. Padova 53, 15–19 (1975)

Itoh, S., Takahashi, W.: Single valued mappings, multivalued mappings and fixed point theorems. J. Math. Anal. Appl. 59, 514–521 (1977)

Kadelburg, Z., Nashine, H.K., Radenović, S.: Fixed point results under various contractive conditions in partial metric spaces. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM (in press)

Karapınar, E.: Weak $$\phi $$ -contraction on partial metric spaces. J. Comput. Anal. Appl. 14, 206–210 (2012)

Karapınar, E., Erhan, I.M.: Fixed point theorems for operators on partial metric spaces. Appl. Math. Lett. 24, 1900–1904 (2011)

Matthews, S.G.: Partial metric topology, In: Proc. 8th Summer Conference on General Topology and Applications, in. Ann. New York Acad. Sci. 728, 183–197 (1994)

Nadler, S.B.: Multivalued contraction mappings. Pacific J. Math. 30, 475–488 (1969)

Paesano, D., Vetro, P.: Suzuki’s type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces. Topol. Appl. 159, 911–920 (2012)

Ray, B.K.: On Ciric’s fixed point theorem. Fund. Math. 94, 221–229 (1977)

Rhoades, B.E.: A comparison of various definitions of contractive mappings. Trans. Am. Math. Soc. 226, 257–290 (1977)

Rouhani, B.D., Moradi, S.: Common fixed point of multivalued generalized $$\varphi $$ -weak contractive mappings, Fixed Point Theory Appl., Article ID 708984, p 13 (2010)

Vetro, F., Radenović, S.: Nonlinear $$\psi $$ -quasi-contractions of Ćirić-type in partial metric spaces. Appl. Math. Comput. 219, 1594–1600 (2012)

Wong, C.S.: Common fixed points of two mappings. Pacific J. Math. 48, 299–312 (1973)

Zhang, Q., Song, Y.: Fixed point theory for generalized $$\varphi $$ -weak contractions. Appl. Math. Lett. 22, 75–78 (2009)