Common fixed points for multivalued generalized contractions on partial metric spaces
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abbas, M., Nazir, T., Romaguera, S.: Fixed point results for generalized cyclic contraction mappings in partial metric spaces. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. 106, 287–297 (2012)
Aubin, J.P.: Applied abstract analysis. Wiley, New York (1977)
Aubin, J.P., Siegel, J.: Fixed points and stationary points of dissipative multivalued maps. Proc. Am. Math. Soc. 78, 391–398 (1980)
Altun, I., Sola, F., Simsek, H.: Generalized contractions on partial metric spaces. Topol. Appl. 157, 2778–2785 (2010)
Aydi, H.: Some fixed point results in ordered partial metric spaces. J. Nonlinear Sci. Appl. 4(2), 210–217 (2011)
Aydi, H.: Fixed point results for weakly contractive mappings in ordered partial metric spaces. J. Adv. Math. Stud. 4(2), 1–12 (2011)
Aydi, H.: Common fixed points for four maps in ordered partial metric spaces. Fasc. Math. 49, 15–31 (2012)
Aydi, H., Abbas, M., Vetro, C.: Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces. Topol. Appl. 159, 3234–3242 (2012)
Aydi, H., Hadj Amor, S., Karapinar, E.: Berinde Type generalized contractions on partial metric spaces. Abstr. Appl. Anal. Article ID 312479, p 20 (2012)
Aydi, H., Vetro, C., Sintunavarat, W., Kumam, P.: Coincidence and fixed points for contractions and cyclical contractions in partial metric spaces. Fixed Point Theory Appl. 2012, 124 (2012)
Baskaran, R., Subrahmanyam, P.V.: A note on the solution of a class of functional equations. Appl. Anal. 22, 235–241 (1986)
Bellman, R.: Methods of Nonliner Analysis. Vol. II, vol. 61 of Mathematics in Science and Engineering. Academic Press, New York (1973)
Bellman, R., Lee, E.S.: Functional equations in dynamic programming. Aequationes Math. 17, 1–18 (1978)
Bhakta, T.C., Mitra, S.: Some existence theorems for functional equations arising in dynamic programming. J. Math. Anal. Appl. 98, 348–362 (1984)
Daffer, P.Z., Kaneko, H.: Fixed points of generalized contractive multi-valued mappings. J. Math. Anal. Appl. 192, 655–666 (1995)
Di Bari, C., Vetro, P.: Common fixed points for $$\psi $$ -contractions on partial metric spaces, to appear in Hacet. J. Math. Stat.
Di Bari, C., Vetro, P.: Fixed points for weak $$\varphi $$ -contractions on partial metric spaces. Int. J. Eng. 1, 5–13 (2011)
Dube, L.S., Singh, S.P.: On multivalued contraction mapping. Bull. Math. Soc. Set. Math. R. S. Roumanie 14, 307–310 (1970)
Hardy, G.E., Rogers, T.D.: A generalization of fixed point theorem of Reich. Canad. Math. Bull. 16, 201–206 (1973)
Iseki, K.: Multivalued contraction mappings in complete metric spaces. Rend. Semin. Mat. Univ. Padova 53, 15–19 (1975)
Itoh, S., Takahashi, W.: Single valued mappings, multivalued mappings and fixed point theorems. J. Math. Anal. Appl. 59, 514–521 (1977)
Kadelburg, Z., Nashine, H.K., Radenović, S.: Fixed point results under various contractive conditions in partial metric spaces. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM (in press)
Karapınar, E.: Weak $$\phi $$ -contraction on partial metric spaces. J. Comput. Anal. Appl. 14, 206–210 (2012)
Karapınar, E., Erhan, I.M.: Fixed point theorems for operators on partial metric spaces. Appl. Math. Lett. 24, 1900–1904 (2011)
Matthews, S.G.: Partial metric topology, In: Proc. 8th Summer Conference on General Topology and Applications, in. Ann. New York Acad. Sci. 728, 183–197 (1994)
Paesano, D., Vetro, P.: Suzuki’s type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces. Topol. Appl. 159, 911–920 (2012)
Rhoades, B.E.: A comparison of various definitions of contractive mappings. Trans. Am. Math. Soc. 226, 257–290 (1977)
Rouhani, B.D., Moradi, S.: Common fixed point of multivalued generalized $$\varphi $$ -weak contractive mappings, Fixed Point Theory Appl., Article ID 708984, p 13 (2010)
Vetro, F., Radenović, S.: Nonlinear $$\psi $$ -quasi-contractions of Ćirić-type in partial metric spaces. Appl. Math. Comput. 219, 1594–1600 (2012)