Common fixed point results for new Ciric-type rational multivalued F-contraction with an application
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abbas, M., Ali, B., Romaguera, S.: Fixed and periodic points of generalized contractions in metric spaces. Fixed Point Theory Appl. 2013, 243 (2013)
Acar, Ö., Altun, I.: A Fixed Point Theorem for Multivalued Mappings with delta-Distance. Abstr. Appl. Anal. 2014, Article ID 497092 (2014). https://doi.org/10.1155/2014/497092
Acar, Ö., Durmaz, G., Minak, G.: Generalized multivalued $$ F-$$ F - contractions on complete metric spaces. Bull. Iran. Math. Soc. 40, 1469–1478 (2014)
Agarwal, R.P., Hussain, N., Taoudi, M.-A.: Fixed Point Theorems in Ordered Banach Spaces and Applications to Nonlinear Integral Equations. Abstr. Appl. Anal. 2012, Article ID 245872 (2012). https://doi.org/10.1155/2012/245872
Ahmad, J., Al-Rawashdeh, A., Azam, A.: Some new fixed point theorems for generalized contractions in complete metric spaces. Fixed Point Theory Appl. 2015, 80 (2015)
Arshad, M., Khan, S.U., Ahmad, J.: Fixed point results for $$F$$ F -contractions involving some new rational expressions. JP J. Fixed Point Theory Appl. 11(1), 79–97 (2016)
Azam, A., Arshad, M.: Fixed points of a sequence of locally contractive multi-valued maps. Comp. Math. Appl. 57, 96–100 (2009)
Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux equations itegrales. Fund. Math. 3, 133–181 (1922)
Ćirić, L.B.: A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 45, 267–273 (1974)
Dugundji, J., Granas, A.: Fixed Point Theory, vol. I. Monografite Mat, Warszawa (1982)
Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory, vol. 28. Cambridge University Press, Cambridge, Cambridge Studies in Advanced Mathematics (1990)
Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Monographs and Textbooks in Pure and Applied Mathematics, vol. 83. Marcel Dekker, New York (1984)
Hitzler, P., Seda, A.K.: Dislocated Topologies. J. Elect. Eng. 51(12/s), 3–7 (2000)
Hussain, N., Abdul, L., Iram, I.: Fixed point results for generalized F-contractions in modular metric and fuzzy metric spaces. Fixed Point Theory Appl. 2015, 158 (2015)
Hussain, N., Ahmad, J., Ciric, L., Azam, A.: Coincidence point theorems for generalized contractions with application to integral equations, Fixed Point Theory Appl. 2015:78 (2015). https://doi.org/10.1186/s13663-015-0331-4
Hussain, N., Ahmad, J., Azam, A.: On Suzuki-Wardowski type fixed point theorems. J. Nonlinear Sci. Appl. 8, 1095–1111 (2015)
Hussain, N., Salimi, P.: Suzuki-Wardowski type fixed point theorems for $$\alpha $$ α - $$GF$$ GF -contractions. Taiwan. J. Math. 18(6), 1879–1895 (2014)
Hussain, N., Khan, A.R., Agarwal, Ravi P.: Krasnosel’skii and Ky Fan type fixed point theorems in ordered Banach spaces. J. Nonlinear Convex Anal. 11(3), 475–489 (2010)
Hussain, A., Arshad, M., Khan, S.U.: $$\tau -$$ τ - Generalization of fixed point results for $$F-$$ F - contraction, Bangmod Int. J. Math. Comp. Sci. 1(1), 127–137 (2015)
Hussain, A., Arshad, M., Nazam, M., Khan, S.U.: New type of results involving closed ball with graphic contraction. J. Inequal. Spec. Funct. 7(4), 36–48 (2016)
Khan, S.U., Arshad, M., Hussain, A., Nazam, M.: Two new types of fixed point theorems for $$F$$ F -contraction. J. Adv. Stud. In. Topology 7(4), 251–260 (2016)
Matthews, S.G.: Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications. Ann. New York Acad. Sci. 728, 183–197 (1994)
Nieto, J.J., Rodríguez-López, R.: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22, 223–239 (2005)
Piri, H., Kumam, P.: Some fixed point theorems concerning $$F$$ F -contraction in complete metric spaces. Fixed Point Theory Appl. 2014, 210 (2014)
Reich, S.: Fixed points of contractive functions. Boll. Un. Math. Ital. 5, 26–42 (1972)
Salimi, P., Latif, A., Hussain, N.: Modified $$\alpha $$ α - $$\psi $$ ψ -contractive mappings with applications. Fixed Point Theory Appl. 2013, 151 (2013)
Secelean, N.A.: Iterated function systems consisting of $$F$$ F -contractions. Fixed Point Theory Appl. (2013). https://doi.org/10.1186/1687-1812-2013-277 (Article ID 277)
Sgroi, M., Vetro, C.: Multi-valued $$F-$$ F - contractions and the solution of certain functional and integral equations. Filomat 27(7), 1259–1268 (2013)
Shoaib, A., Hussain, A., Arshad, M., Azam, A.: Fixed point results for $$\alpha _{\ast }$$ α * - $$\psi $$ ψ -Ciric type multivalued mappings on an intersection of a closed ball and a sequence with graph. J. Math. Anal. 7(3), 41–50 (2016)
Shoaib, A.: Fixed point results for $$\alpha _{\ast }$$ α * - $$\psi $$ ψ -multivalued mappings. Bull. Math. Anal. Appl. 8(4), 43–55 (2016)