Common fixed point results for new Ciric-type rational multivalued F-contraction with an application

Tahair Rasham1, Abdullah Shoaib2, Nawab Hussain3, Muhammad Arshad1, Sami Ullah Khan4
1Department of Mathematics, International Islamic University, Islamabad, Pakistan
2Department of Mathematics and Statistics, Riphah International University, Islamabad, Pakistan
3Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia
4Department of Mathematics, Gomal University, Dera Ismail Khan, Pakistan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abbas, M., Ali, B., Romaguera, S.: Fixed and periodic points of generalized contractions in metric spaces. Fixed Point Theory Appl. 2013, 243 (2013)

Acar, Ö., Altun, I.: A Fixed Point Theorem for Multivalued Mappings with delta-Distance. Abstr. Appl. Anal. 2014, Article ID 497092 (2014). https://doi.org/10.1155/2014/497092

Acar, Ö., Durmaz, G., Minak, G.: Generalized multivalued $$ F-$$ F - contractions on complete metric spaces. Bull. Iran. Math. Soc. 40, 1469–1478 (2014)

Agarwal, R.P., Hussain, N., Taoudi, M.-A.: Fixed Point Theorems in Ordered Banach Spaces and Applications to Nonlinear Integral Equations. Abstr. Appl. Anal. 2012, Article ID 245872 (2012). https://doi.org/10.1155/2012/245872

Ahmad, J., Al-Rawashdeh, A., Azam, A.: Some new fixed point theorems for generalized contractions in complete metric spaces. Fixed Point Theory Appl. 2015, 80 (2015)

Arshad, M., Khan, S.U., Ahmad, J.: Fixed point results for $$F$$ F -contractions involving some new rational expressions. JP J. Fixed Point Theory Appl. 11(1), 79–97 (2016)

Azam, A., Arshad, M.: Fixed points of a sequence of locally contractive multi-valued maps. Comp. Math. Appl. 57, 96–100 (2009)

Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux equations itegrales. Fund. Math. 3, 133–181 (1922)

Ćirić, L.B.: A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 45, 267–273 (1974)

Dugundji, J., Granas, A.: Fixed Point Theory, vol. I. Monografite Mat, Warszawa (1982)

Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory, vol. 28. Cambridge University Press, Cambridge, Cambridge Studies in Advanced Mathematics (1990)

Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Monographs and Textbooks in Pure and Applied Mathematics, vol. 83. Marcel Dekker, New York (1984)

Hitzler, P., Seda, A.K.: Dislocated Topologies. J. Elect. Eng. 51(12/s), 3–7 (2000)

Hussain, N., Abdul, L., Iram, I.: Fixed point results for generalized F-contractions in modular metric and fuzzy metric spaces. Fixed Point Theory Appl. 2015, 158 (2015)

Hussain, N., Ahmad, J., Ciric, L., Azam, A.: Coincidence point theorems for generalized contractions with application to integral equations, Fixed Point Theory Appl. 2015:78 (2015). https://doi.org/10.1186/s13663-015-0331-4

Hussain, N., Ahmad, J., Azam, A.: On Suzuki-Wardowski type fixed point theorems. J. Nonlinear Sci. Appl. 8, 1095–1111 (2015)

Hussain, N., Salimi, P.: Suzuki-Wardowski type fixed point theorems for $$\alpha $$ α - $$GF$$ GF -contractions. Taiwan. J. Math. 18(6), 1879–1895 (2014)

Hussain, N., Khan, A.R., Agarwal, Ravi P.: Krasnosel’skii and Ky Fan type fixed point theorems in ordered Banach spaces. J. Nonlinear Convex Anal. 11(3), 475–489 (2010)

Hussain, A., Arshad, M., Khan, S.U.: $$\tau -$$ τ - Generalization of fixed point results for $$F-$$ F - contraction, Bangmod Int. J. Math. Comp. Sci. 1(1), 127–137 (2015)

Hussain, A., Arshad, M., Nazam, M., Khan, S.U.: New type of results involving closed ball with graphic contraction. J. Inequal. Spec. Funct. 7(4), 36–48 (2016)

Khan, S.U., Arshad, M., Hussain, A., Nazam, M.: Two new types of fixed point theorems for $$F$$ F -contraction. J. Adv. Stud. In. Topology 7(4), 251–260 (2016)

Matthews, S.G.: Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications. Ann. New York Acad. Sci. 728, 183–197 (1994)

Nadler, S.B.: Multivalued contraction mappings. Pac. J. Math. 30, 475–488 (1969)

Nieto, J.J., Rodríguez-López, R.: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22, 223–239 (2005)

Piri, H., Kumam, P.: Some fixed point theorems concerning $$F$$ F -contraction in complete metric spaces. Fixed Point Theory Appl. 2014, 210 (2014)

Reich, S.: Some remarks concerninig contraction mappings. Cand. Math Bull. 14, 121–124 (1971)

Reich, S.: Fixed points of contractive functions. Boll. Un. Math. Ital. 5, 26–42 (1972)

Salimi, P., Latif, A., Hussain, N.: Modified $$\alpha $$ α - $$\psi $$ ψ -contractive mappings with applications. Fixed Point Theory Appl. 2013, 151 (2013)

Secelean, N.A.: Iterated function systems consisting of $$F$$ F -contractions. Fixed Point Theory Appl. (2013). https://doi.org/10.1186/1687-1812-2013-277 (Article ID 277)

Sgroi, M., Vetro, C.: Multi-valued $$F-$$ F - contractions and the solution of certain functional and integral equations. Filomat 27(7), 1259–1268 (2013)

Shoaib, A., Hussain, A., Arshad, M., Azam, A.: Fixed point results for $$\alpha _{\ast }$$ α * - $$\psi $$ ψ -Ciric type multivalued mappings on an intersection of a closed ball and a sequence with graph. J. Math. Anal. 7(3), 41–50 (2016)

Shoaib, A.: Fixed point results for $$\alpha _{\ast }$$ α * - $$\psi $$ ψ -multivalued mappings. Bull. Math. Anal. Appl. 8(4), 43–55 (2016)

Wardowski, D.: Fixed point theory of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 94 (2012). https://doi.org/10.1186/1687-1812-2012-94