Common Bayesian Models for Common Cognitive Issues

Francis Colas1, Julien Diard2, Pierre Bessìère3
1ASL, ETH Zurich, Tannenstrasse 3, 8092, Zurich, Switzerland
2LPNC, CNRS, UPMF, Bâtiment Sciences de l’Homme et Mathématique, BP 47, 38040, Grenoble Cedex 9, France
3E-Motion, LIG, CNRS, 655 avenue de l’Europe, 38334, Montbonnot Saint-Ismier, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alais D, Burr D (2004) The ventriloquist effect results from near-optimal bimodal integration. Curr Biol 14:257–262

Anastasio TJ, Patton PE, Belkacem-Boussaid K (2000) Using Bayes’ rule to model multisensory enhancement in the superior colliculus. Neural Comput 12(5):1165–1187

Arulampalam S, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filter for online nonlinear/non-gaussian Bayesian tracking. IEEE Transact Signal Proc 50(2):174–188

Banks MS (2004) Neuroscience: what you see and hear is what you get. Curr Biol 14(6):236–238

Battaglia PW, Jacobs RA, Aslin RN (2003) Bayesian integration of visual and auditory signals for spatial localization. J Opt Soc Am A 20(7):1391–1397

Bengio Y, Frasconi P (1995) An input/output HMM architecture. In: Tesauro G, Touretzky D, Leen T (eds) Advances in neural information processing systems 7. MIT Press, Cambridge, pp 427–434

Bessière P, Ahuactzin J-M, Aycard O, Bellot D, Colas F, Coué C, Diard J, Garcia R, Koike C, Lebeltel O, LeHy R, Malrait O, Mazer E, Mekhnacha K, Pradalier C, Spalanzani A (2003) Survey: Probabilistic methodology and techniques for artefact conception and development. Technical Report RR-4730, INRIA Rhône-Alpes, Montbonnot, France

Bessière P, Laugier C, Siegwart R (eds) (2008) Probabilistic reasoning and decision making in sensory-motor systems, vol 46 of STAR. Springer, Berlin

Bishop CM, Svensén M (2003) Bayesian hierarchical mixtures of experts. In: Proceedings of the ninteenth conference on uncertainty in artificial intelligence. Acapulco, Mexico

Boutilier C, Dean T, Hanks S (1999) Decision theoretic planning: Structural assumptions and computational leverage. J Artif Intell Res (JAIR) 11:1–94

Brockwell PJ, Davis RA (2000) Introduction to time series and forecasting, 2nd edn. Springer, Berlin

Dean T, Kanazawa K (1989) A model for reasoning about persistence and causation. Comput Intell 5(3):142–150

Diard J, Bessière P (2008) Bayesian maps: probabilistic and hierarchical models for mobile robot navigation. In: Bessière P, Laugier C, Siegwart R (eds) Probabilistic reasoning and decision making in sensory-motor systems, vol 46. Springer Tracts in Advanced Robotics. Springer, Berlin, pp 153–176

Drewing K, Ernst M (2006) Integration of force and position cues for shape perception through active touch. Brain Res 1078:92–100

Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415(6870):429–433

Frey BJ (1998) Graphical models for machine learning and digital communication. MIT Press, Cambridge

Geisler WS, Kersten D (2002) Illusions, perception and Bayes. Nature Neuroscience 5(6):598–604

Gepshtein S, Banks MS (2003) Viewing geometry determines how vision and haptics combine in size perception. Curr Biol 13(6):483–488

Ghahramani Z, Wolpert DM, Jordan MI (1997) Computational models of sensorimotor integration. In: Morasso PG, Sanguineti V (eds) Self-organization, computational maps and motor control. Elsevier, Amsterdam, pp 117–147

Gopnik A, Schulz L (2004) Mechanisms of theory formation in young children. Trends Cogn Sci 8(8):371–377

Haith A, Jackson C, Miall C, Vijayakumar S (2008) Unifying the sensory and motor components of sensorimotor adaptation. In: Advances in neural information processing systems (NIPS 2008)

Harvey AC (1992) Forecasting, structural time series models and the Kalman filter. Cambridge University Press, Cambridge.

Hauskrecht M, Meuleau N, Boutilier L, Kaelbling L, Dean T (1998) Hierarchical solution of markov decision processes using macro-actions. In: Proceedings of the 14-th conference on uncertainty in artificial intelligence. pp 220–229.

Hillis JM, Watt SJ, Landy MS, Banks MS (2004) Slant from texture and disparity cues: optimal cue combination. J Vis 4:967–992

Jacobs RA (1999) Optimal integration of texture and motion cues to depth. Vis Res 39:3621–3629

Jacobs RA, Jordan MI, Nowlan SJ, Hinton GE (1991) Adaptive mixtures of local experts. Neural Comput 3:79–87

Jaynes ET (2003) Probability theory: the logic of science. Cambridge University Press, Cambridge

Jensen F (1996) An introduction to Bayesian networks. UCL Press, London

Jordan MI (1999) Learning in graphical models. MIT Press, Cambridge (Edited Volume)

Jürgens R, Becker W (2006) Perception of angular displacement without landmarks: evidence for Bayesian fusion of vestibular, optokinetic, podokinesthetic, and cognitive information. Exp Brain Res 174:528–543

Kaelbling LP, Littman M, Cassandra A (1998) Planning and acting in partially observable stochastic domain. Artifi Intell 101(1–2):99–134

Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME–J Basic Eng 82(Series D):35–45

Kemp C, Tenenbaum J (2008) The discovery of structural form. Proc Natl Acad Sci USA 105(31):10687–10692

Kersten D, Mamassian P, Yuille A (2004) Object perception as Bayesian inference. Ann Rev Psychol 55:271–304

Kiemel T, Oie K, Jeka J (2002) Multisensory fusion and the stochastic structure of postural sway. Biol Cybern 87:262–277

Knill DC, Richards W (1996) Perception as Bayesian inference. MIT Press, Cambridge, MA

Koike C (2005) Bayesian approach to action selection and attention focusing. Application in autonomous robot programming. Thèse de doctorat, Inst. Nat. Polytechnique de Grenoble, Grenoble (FR)

Koike C, Bessière P, Mazer E (2008) Bayesian approach to action selection and attention focusing. In: Bessière P, Laugier C, Siegwart R (eds) Probabilistic reasoning and decision making in sensory-motor systems, vol 46 of STAR. Springer, Berlin

Koller D, Pfeffer A (1997) Object-oriented Bayesian networks. In: Proceedings of the thirteenth conference on uncertainty in artifical intelligence. Morgan Kaufmann publishers, San Francisco, pp 302–313

Körding KP, Beierholm U, Ma WJ, Quartz S, Tenenbaum JB, Shams L (2007) Causal inference in multisensory perception. PLoS one 2(9):e943

Körding KP, Wolpert DM (2004a) Bayesian integration in sensorimotor learning. Nature 427:244–247

Körding KP, Wolpert DM (2004b) The loss function of sensorimotor learning. Proc Natl Acad Sci USA 101(26):9839–9842

Kuipers BJ (2000) The spatial semantic hierarchy. Artifi Intell 119(1–2):191–233

Landy MS, Maloney LT, Johnston EB, Young M (1995) Measurement and modeling of depth cue combination: in defense of weak fusion. Vis Res 35:389–412

Laskey KB, Mahoney SM (1997) Network fragments: representing knowledge for constructing probabilistic models. In: Proceedings of the thirteenth conference on uncertainty in artifical intelligence. Morgan Kaufmann publishers, San Francisco, pp 334–341

Laurens J, Droulez J (2007) Bayesian processing of vestibular information. Biol Cybern 96:389–404

Laurens J, Droulez J (2008) Bayesian modeling of visuo-vestibular interactions. In: Bessière P, Laugier C, Siegwart R (eds) Probabilistic reasoning and decision making in sensory-motor systems, vol 46 of STAR. Springer, Berlin

Lebeltel O, Bessière P, Diard J, Mazer E (2004) Bayesian robot programming. Adv Robot 16(1):49–79

Leonard J, Durrant-Whyte H, Cox I (1992) Dynamic map-building for an autonomous mobile robot. Intl J Robot Res 11(4):286–298

Maeda S (1990) Compensatory articulation during speech: evidence from the analysis and synthesis of vocal-tract shapes using an articulatory model. In: Hardcastle WJ, Marchal A (eds) Speech production and speech modelling. Kluwer, Dordrecht, pp 131–149

Mitchell TM (1997) Machine Learning. McGraw-Hill, Hall

Murphy K (2002) Dynamic Bayesian networks: Representation, Inference and Learning. Ph.D. thesis, University of California, Berkeley, Berkeley, CA

Neal RM, Beal MJ, and Roweis ST (2003) Inferring state sequences for non-linear systems with embedded hidden Markov models. In: Thrun S, and al, (eds), Advances in neural information processing systems 16. MIT Press, Cambridge

Nefian A, Hayes M (1999) Face recognition using an embedded hmm. In: Proceedings of the IEEE conference on audio and video-based biometric person authentication. pp 19–24

Pearl J (1988) Probabilistic reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo

Pineau J, Thrun S (2002) High-level robot behaviour control with POMDPs. In: AAAI workshop on cognitive robotics

Pizlo Z (2001) Perception viewed as an inverse problem. Vision Research 41(24):3141–3161

Poggio T (1984) Vision by man and machine. Sci Am 250:106–116

Pradalier C, Colas F, Bessière P (2003) Expressing Bayesian fusion as a product of distributions: applications in robotics. In: Proceedings IEEE international conference on intelligent robots and systems

Rabiner LR (1989) A tutorial on hidden markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286

Rabiner LR, Juang B-H (1993) Fundamentals of speech recognition, chapter theory and implementation of Hidden Markov Models. Prentice Hall, Englewood Cliffs, pp 321–389

Robinson JA (1979) Logic: form and function. North-Holland, New York

Sato Y, Toyoizumi T, Aihara K (2007) Bayesian inference explains perception of unity and ventriloquism aftereffect: Identification of common sources of audiovisual stimuli. Neural Comput 19(12):3335–3355

Stocker A, Simoncelli E (2008) A Bayesian model of conditioned perception. In: Platt J, Koller D, Singer Y, Roweis S (eds) Advances in neural information processing systems 20. MIT Press, Cambridge, pp 1409–1416

Thrun S (2000) Probabilistic algorithms in robotics. AI Magazine 21(4):93–109

Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. MIT Press, Cambridge

van der Kooij H, Jacobs R, Koopman B, Grootenboer H (1999) A multisensory integration model of human stance control. Biol Cybern 80:299–308

Waterhouse S, MacKay D, Robinson T (1996) Bayesian methods for mixtures of experts. In: Touretzky DS, Mozer MC, Hasselmo ME (eds) Advances in neural information processing systems, vol 8. The MIT Press, Cambridge, pp 351–357

Weiss Y, Simoncelli EP, Adelson EH (2002) Motion illusions as optimal percepts. Nature Neurosci 5(6):598–604

Wolpert D (2007) Probabilistic models in human sensorimotor control. Hum Movement Sci 26:511–24

Yuille AL, Bülthoff HH (1996) Bayesian decision theory and psychophysics. In: Knill DC, Richards W (eds) Perception as Bayesian inference. MIT Press, Cambridge, pp 123–161

Zupan LH, Merfeld DM, Darlot C (2002) Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements. Biol Cybern 86(3):209–230