Comments on integral variants of ISS

Systems and Control Letters - Tập 34 Số 1-2 - Trang 93-100 - 1998
Eduardo D. Sontag1
1Department of Mathematics Rutgers University Piscataway NJ 08854‐8019 USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

D. Angeli, E.D. Sontag, Y. Wang, A characterization of integral input to state stability, submitted.

W. Hahn, Stability of Motion, Springer, Berlin, 1967.

J. Hale, Ordinary Differential Equations, 2nd ed.,Krieger, Malabar, 1980.

Isidori, 1996, Global almost disturbance decoupling with stability for non minimum-phase single-input single-output nonlinear systems, Systems Control Lett., 28, 115, 10.1016/0167-6911(96)00021-7

M. Krstić, I. Kanellakopoulos, P.V. Kokotović, Nonlinear and Adaptive Control Design, Wiley, New York, 1995.

Praly, 1996, Stabilization in spite of matched unmodelled dynamics and an equivalent definition of input-to-state stability, Math. Control Signals Systems, 9, 1, 10.1007/BF01211516

E.D. Sontag, Smooth stabilization implies coprime factorization, IEEE Trans. Automat. Control AC-34 (1989) 435–443.

E.D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems, Springer, New York, 1990.

Sontag, 1995, On characterizations of the input-to-state stability property, Systems Control Lett., 24, 351, 10.1016/0167-6911(94)00050-6

Sontag, 1996, New characterizations of the input to state stability property, IEEE Trans. Automat. Control, 41, 1283, 10.1109/9.536498

J. Tsinias, Sontag’s “input to state stability condition” and global stabilization using state detection, Systems Control Lett. 20 (1993) 219–226.