Commentary on strengthening the assessment of factorial invariance across population subgroups: a commentary on Varni et al. (2013)

Springer Science and Business Media LLC - Tập 22 - Trang 2603-2606 - 2013
A. Alexander Beaujean1, Christine A. Limbers2, James W. Varni3
1Department of Educational Psychology, Baylor University, Waco, USA
2Department of Psychology and Neuroscience, Baylor University, Waco, USA
3Department of Pediatrics, College of Medicine, Texas A&M University, College Station, USA

Tóm tắt

In his commentary on Varni et al.’s (Qual Life Res. doi: 10.1007/s11136-013-0370-4 , 2013) article, McIntosh (Qual Life Res. doi: 10.1007/s11136-013-0465-y , 2013) has two main arguments. First, we should have paid more attention to statistical tests (i.e., χ 2 values) instead of approximate fit indexes for our analysis, especially with the baseline model. Second, Bayesian methods are better than the frequentist methods we used in determining the model’s invariance across age and gender groups. We believe that statistical tests do have a place in assessing model fit, but overemphasis on them, especially with larger sample sizes, can lead to errant decisions. Second, while we agree that Bayesian methods have the potential to contribute much to the field of assessing invariance, more development needs to be conducted before they can be widely utilized in assessing factorial invariance across groups.

Tài liệu tham khảo

Aiken, L. S., West, S. G., & Millsap, R. E. (2008). Doctoral training in statistics, measurement, and methodology in psychology: Replication and extension of Aiken, West, Sechrest, and Reno’s (1990) survey of PhD programs in North America. American Psychologist, 63(1), 32–50. doi:10.1037/0003-066X.63.1.32. Barrett, P. (2007). Structural equation modeling [Special issue]. Personality and Individual Differences, 42(5). Barrett, P. (2007). Structural equation modelling: Adjudging model fit. Personality and Individual Differences, 42(5), 815–824. doi:10.1016/j.paid.2006.09.018. Bartholomew, D., Knott, M., & Moustaki, I. (2011). Latent variable models and factor analysis: A unified approach (3rd edn). New York: Wiley. Bentler, P. M. (2007). On tests and indices for evaluating structural models. Personality and Individual Differences, 42(5), 825–829. doi:10.1016/j.paid.2006.09.024. Boomsma, A. (2000). Reporting analyses of covariance structures. Structural Equation Modeling: A Multidisciplinary Journal, 7(3), 461–483. doi:10.1207/s15328007sem0703_6. Boomsma, A., Hoyle, R. H., & Panter, A. T. (2012). The structural equation modeling research report. New York, NY: Guilford. Burnham, K. P., & Anderson, D. (2002). Model selection and multimodel inference: A practical information-theoretic approach (2nd edn). New York: Springer. Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 9(2), 233–255. doi:10.1207/S15328007SEM0902_5. Cudeck, R., & Henly, S. J. (1991). Model selection in covariance structures analysis and the "problem" of sample size: A clarification. Psychological Bulletin, 109(3), 512–519. doi:10.1037/0033-2909.109.3.512. Curran, P., West, S., & Finch, J. (1996). The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychological Methods, 1(1), 16–29. doi:10.1037/1082-989X.1.1.16. Dixon, P. (2003). The p-value fallacy and how to avoid it. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie experimentale, 57(3), 189–202. doi:10.1037/h0087425. Fox, J. P. (2010). Bayesian item response modeling: Theory and applications. New York, NY: Springer. Hoyle, R. H. (2012). Model specification in structural equation modeling (pp. 126–144). New York, NY: Guilford. Hu, L., Bentler, P. M., & Kano, Y. (1992). Can test statistics in covariance structure analysis be trusted? Psychological Bulletin, 112(2), 351–362. doi:10.1037/0033-2909.112.2.351. Jöreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 34(2), 183–202. doi:10.1007/BF02289343. Jöreskog, K. G., & Sörbom, D. (1982). Recent developments in structural equation modeling. Journal of Marketing Research (JMR), 19(4), 404–416. Kruschke, J. K., Aguinis, H., & Joo, H. (2012). The time has come: Bayesian methods for data analysis in the organizational sciences. Organizational Research Methods, 15(4), 722–752. doi:10.1177/1094428112457829. Lee, S. Y. (2007). Structural equation modeling: A Bayesian approach. Hoboken, NJ: Wiley. MacCallum, R. C., Roznowski, M., & Necowitz, L. B. (1992). Model modifications in covariance structure analysis: The problem of capitalization on chance. Psychological Bulletin, 111(3), 490–504. doi:10.1037/0033-2909.111.3.490. Marsh, H. W., Hau, K. T., & Grayson, D. (2005). Goodness of fit in structural equation models (pp. 275–340). Mahwah, NJ: Lawrence Erlbaum. McDonald, R. P. (2010). Structural models and the art of approximation. Perspectives on Psychological Science, 5(6), 675–686. doi:10.1177/1745691610388766. McDonald, R. P., & Ho, M. H. R. (2002). Principles and practice in reporting structural equation analyses. Psychological Methods, 7(1), 64–82. doi:10.1037/1082-989X.7.1.64. McIntosh, C. N. (2013). Strengthening the assessment of factorial invariance across population subgroups: A commentary on Varni et al. Quality of Life Research. doi:10.1007/s11136-013-0465-y Mulaik, S. (2007). There is a place for approximate fit in structural equation modelling. Personality and Individual Differences, 42(5), 883–891. doi:10.1016/j.paid.2006.10.024. Saris, W. E., Satorra, A., & van der Veld, W. M. (2009). Testing structural equation models or detection of misspecifications? Structural Equation Modeling: A Multidisciplinary Journal, 16(4), 561–582. doi:10.1080/10705510903203433. Satorra, A., & Bentler, P. M. (2001). A scaled difference chi-square test statistic for moment structure analysis. Psychometrika, 66(4), 507–514. doi:10.1007/bf02296192. Varni, J. W., Beaujean, A. A., & Limbers, C. A. (2013). Factorial invariance of pediatric patient self-reported fatigue across age and gender: A multigroup confirmatory factor analysis approach utilizing the PedsQLTM Multidimensional Fatigue Scale. Quality of Life Research. doi:10.1007/s11136-013-0370-4. West, S. G., Taylor, A. B., & Wu, W. (2012). Model fit and model selection in structural equation modeling (pp. 209–231). New York, NY: Guilford. Williams, L. J. (2012). Equivalent models: Concepts, problems, alternatives (pp. 247–260). New York, NY: Guilford.