Combustion synthesis and characterization of Fe-Ni alloys
Tóm tắt
Từ khóa
Tài liệu tham khảo
Durlu, T.N., New Observations on the Formation of Strain-Induced Martensite in Fe-29.6%Ni Alloy, J. Mater. Sci., 1996, vol. 31, no. 10, pp. 2585–2589.
Gungunes, H., Yasar, E., Kilic, A., and Durlu, T.N., Martensitic Transformation and Magnetic Properties of Fe-24.5%Ni-4.5%Si Alloy, Mater. Sci. Technol., 2007, vol. 23, no. 8, pp. 975–979.
Morito, S., Tanaka, H., Konishi, R., Furuhara, T., and Maki, T., The Morphology and Crystallography of Lath Martensite in Fe-C Alloys, Acta Mater., 2003, vol. 51, no. 6, pp. 1789–1799.
Shibata, A., Morito, S., Furuhara, T., and Maki, T., Substructures of Lenticular Martensites with Different Martensite Start Temperatures in Ferrous Alloys, Acta Mater., 2009, vol. 57, no. 2, pp. 483–492.
Yasar, E., Gungunes, H., Akturk, S., and Durlu, T.N., New Observations on the Formation of Athermal Martensite in Fe-Ni-Mo Alloys, J. Alloy. Comp., 2007, vol. 428, nos. 1–2, pp. 125–129.
Güler, E., Kirindi, T., and Aktas, H., Comparison of Thermally Induced and Deformation Induced Martensite in Fe-29%Ni-2%Mn Alloy, J. Alloy. Comp., 2007, vol. 440, nos. 1–2, pp. 168–172.
Sari, U., Güler, E., Kirindi, T., and Dikici, M., Characterization of Martensite in Fe-25%Ni-15%Co-5%Mo Alloy, J. Phys. Chem. Solids, 2009, vol. 70, no. 8, pp. 1226–1229.
Hübner, W., Phase Transformations in Austenitic Stainless Steels During Low Temperature Tribological Stressing, Tribol. Int., 2001, vol. 34, no. 4, pp. 231–236.
Gungunes, H., Yasar, E., and Durlu, T.N., The Effect of Austenitizing Time on Martensite Morphologies and Magnetic Properties of Martensite in Fe-24.5%Ni-4.5%Si Alloy, J. Mater. Sci., 2007., vol. 42, no. 15, pp. 6102–6107.
Shibata, A., Morito, S., Furuhara, T., and Maki, T., Local Orientation Change Inside Lenticular Martensite Plate in Fe-33Ni Alloy, Scr. Mater., 2005, vol. 53, no. 5, pp. 597–602.
Morito, S., Huang, X., Furuhara, T., Maki, T., and Hansen, N., The Morphology and Crystallography of Lath Martensite in Alloy Steels, Acta Mater., 2006, vol. 54, no. 19, pp. 5323–5331.
Tan, Y., De, Z.C., Dong, X., He, Y., and Hu, S., New Observation of Martensitic Morphology and Substructure Using Transmission Electron Microscopy, Metall. Mater. Trans., Ser. A, vol. 23, no. 5, pp. 1413–1421.
Kitahara, H., Ueji, R., Tsuji, N., and Minamino, Y., Crystallographic Features of Lath Martensite in Low-Carbon Steel, Acta Mater., vol. 54, no. 5, pp. 1279–1288.
Morito, S., Yoshida, H., Maki, T., and Huang, X., Effect of Block Size on the Strength of Lath Martensite in Low Carbon Steels, Mater. Sci. Eng., Ser. A, 2006, vols. 438–440, pp. 237–240.
Wang, C., Wang, M., Shi, J., Hui, W., and Dong, H., Effect of Microstructural Refinement on the Toughness of Low Carbon Martensitic Steel, Scr. Mater., 2008, vol. 58, no. 6, pp. 492–495.
Roberts, M., Effect of Transformation Substructure on the Strength and Toughness of Fe-Mn Alloys, Metall. Mater. Trans., Ser. B, 1970, vol. 1, no. 12, pp. 3287–3294.
Liu, Y.J., Li, Y.M., Tan Y.H., and Huang, B.Y., Apparent Morphologies and Nature of Packet Martensite in High Carbon Steels, J. Iron Steel Res. Int., 2006, vol. 13, no. 3, pp. 40–46.
Kitahara, H., Ueji, R., Ueda, M., Tsuji, N., and Minamino, Y., Crystallographic Analysis of Plate Martensite in Fe-28.5 at % Ni by FE-SEM/EBSD, Mater. Charact., vol. 54, nos. 4–5, pp. 378–386.
Akturk, S. and Durlu, T.N., Formation and Magnetic Properties of Butterfly-Shaped Martensite in an Fe-Ni-Cr Alloy, Mater. Sci. Eng., Ser. A, 2006, vol. 438, pp. 292–295.
Luo, C.P. and Liu, J., Crystallography of Lath Martensite and Lower Bainite in Alloy Steels, Mater. Sci. Eng., Ser. A, 2006, vols. 438–440, pp. 149–152.
Fu, L.C., Yang, J., Bi, Q.L., Ma, J.Q., and Liu, W.M., Combustion Synthesis and Characterization of Bulk Nanocrystalline Fe88Si12 Alloy, IEEE Trans. Nanotechnol., 2010, vol. 9, no. 2, pp. 218–222.
Yang, J., La, P.Q., Liu, W.M., and Hao, Y., Microstructure and Properties of Fe3Al-Fe3AlC0.5 Composites Prepared by Self-Propagating High-Temperature Synthesis Casting, Mater. Sci. Eng., Ser. A, 2004, vol. 382, nos. 1–2, pp. 8–14.
Yang, J., Ma, J.Q., Liu, W.M., Bi, Q.L., and Xue, Q.J., Large-Scale Fe-C Nanoeutectic Alloy Prepared by a Self-Propagating High-Temperature Synthesis Casting Route, Scr. Mater., 2008, vol. 58, no. 12, pp. 1074–1077.
Hwang, C.C., Wu, T.Y., Wan, J., and Tsai, J.S., Development of a Novel Combustion Synthesis Method for Synthesizing Ceramic Oxide Powders, Mater. Sci. Eng., Ser. B, 2004. vol. 111, no. 1, pp. 49–56.
La, P., Wei, Y., Lv, R., Zhao, Y., and Yang, Y., Effect of Mn Element on Microstructure and Mechanical Properties of Bulk Nanocrystalline Fe3Al Based Materials Prepared by Aluminothermic Reaction, Mater. Sci. Eng., Ser. A, 2004, vol. 527, no. 9, pp. 2313–2319.
Fu, L.C., Yang, J., Bi, Q.L., and Liu, W.M., Enhanced Ductility of Dendrite-Ultrafine Eutectic Composite Fe3B Alloy Prepared by a Self-Propagating High-Temperature Synthesis, Adv. Eng. Mater., 2009, vol. 11, no. 3, pp. 194–197.
Yi, H. and Moore, J., Combustion Synthesis of TiNi Intermetallic Compounds, J. Mater. Sci., 1989, vol. 24, no. 10, pp. 3456–3462.
Fu, L., Yang, J., Bi, Q., and Liu, W., Combustion Synthesis of Immiscible Nanostructured Fe-Cu Alloy, J. Alloy Comp., 2009, vol. 482, nos. 1–2, pp. L22–L24.
Li, L.J., Bi, Q.L., Yang, J., Liu, W.M., and Xue, Q.J., Fabrication of Bulk Al2O3 Dispersed Ultrafine-Grained Cu Matrix Composite by Self-Propagating High-Temperature Synthesis Casting Route, Mater. Lett., 2008, vol. 62, no. 15, pp. 2458–2460.
Suzuki, T., Shimono, M., and Wuttig, M., Martensitic Transformation in Micrometer Crystals Compared with That in Nanocrystals, Scr. Mater., 2001, vol. 44, nos. 8–9, pp. 1979–1982.
Saidi, A., Chrysanthou, A., Wood, J., and Kellie, J., Characteristics of the Combustion Synthesis of TiC and Fe-TiC Composites, J. Mater. Sci., 1994, vol. 29, no. 19, pp. 4993–4998.
Shibata, A., Yonezawa, H., Yabuuchi, K., Morito, S., Furuhara, T., and Maki, T., Relation Between Martensite Morphology and Volume Change Accompanying fcc to bcc Martensitic Transformation in Fe-Ni-Co Alloys, Mater. Sci. Eng., Ser. A, 2006, vols. 438–440, pp. 241–245.
Speich, G. and Swann, P., Yield Strength and Transformation Substructure of Quenched Iron-Nickel Alloys, J. Iron. Steel. Inst. Jpn., 1965, vol. 203, pp. 480–485.
Roberts, M. and Owen, W., The Strength of Martensitic Iron-Nickel Alloys, ASM Trans. Quart., 1967, vol. 60, no. 4, pp. 687–692.
Sakuma, Y., Matlock, D., and Krauss, G., Intercritically Annealed and Isothermally Transformed 0.15 Pct C Steels Containing 1.2 Pct Si-1.5 Pct Mn and 4 Pct Ni, Part II: Effect of Testing Temperature on Stress-Strain Behavior and Deformation-Induced Austenite Transformation, Metall. Mater. Trans., Ser. A, 1992, vol. 23, no. 4, pp. 1233–1241.