Combustion Synthesis of C and SiC Nanoparticles from Na2CO3–Si Mixtures: Characterization and Electrochemical Performance
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bouchat, V., Feron, O., Gallez, B., Masereel, B., Michiels, C., Borght, T.V., Rossi, F., and Lucas, S., Carbon nanoparticles synthesized by sputtering and gas condensation inside a nanocluster source of fixed dimension, Surf. Coat. Technol. 2011, vol. 205, no. S2, pp. 577–S581. https://doi.org/10.1016/j.surfcoat.2011.03.055
Swihart, M. T., Vapor-phase synthesis of nanoparticles, Curr. Opin. Colloid Interf. Sci., 2003, vol. 3, pp. 127–133. https://doi.org/10.1016/S1359-029403.00007-4
Variava, M.F., Church, T.L., Husin, A., Harris, A. T., and Minett, A.I., Simple gas-solid route to functionalize ordered carbon, ACS Appl. Mater. Interf., 2014, vol. 6, no. 4, pp. 2910–2916. https://doi.org/10.1021/am405484g
Magrez, A., Seo, J.W., Smajda, R., Mionić, M., and Forró, L., Catalytic CVD synthesis of carbon nanotubes: Towards high yield and low-temperature growth, Materials, 2010, vol. 3, no. 11, pp. 4871–4891. https://doi.org/10.3390/ma3114871
Elliott, J.M., Shibuta, Y., Amara, H., Bichara, C., and Neyts, E.C., Atomistic modeling of CVD synthesis of carbon nanotubes and graphene, Nanoscale, 2013, vol. 5, pp. 6662–6676. https://doi.org/10.1039/C3NR01925J
Liu, R., Liu, M., and Chang, J., Large-scale synthesis of monodisperse SiC nanoparticles with adjustable size, stoichiometric ratio and properties by fluidized bed chemical vapor deposition, J. Nanopart. Res., 2017, vol. 19, p. 26. https://doi.org/10.1007/s11051-016-3737-y
Tong, L. and Reddy, R. G., Thermal plasma synthesis of SiC nano-powders/nano-fibers, Mater. Res. Bull., 2006, vol. 41, pp. 2303–2310. https://doi.org/10.1016/j.materresbull.2006.04.021
Xing, T., Sunarso, J., Yang, W., Yin, Y., Glushenkov, A.M., Li, L.H., Howlett, P.C., and Chen, Y., Ball milling: A green mechanochemical approach for synthesis of nitrogen doped carbon nanoparticles, Nanoscale, 2013, vol. 5, pp. 7970–7976. https://doi.org/10.1039/C3NR02328A
Xu, C., De, S., Balu, A.M., Ojeda, M., and Luque, R., Mechanochemical synthesis of advanced nanomaterials for catalytic application, Chem. Commun., 2015, vol. 51, pp. 6698–6713. https://doi.org/10.1039/C4CC09876E
Zhang, G., Wei, G., Zheng, K., Li, L., Xu, D., Wang, D., Xue, Y., and Su, W., The synthesis of beta-SiC nanoparticles by high-energy mechanical ball milling and their photoluminescence properties, J. Nanosci. Nanotechnol., 2010, vol. 10, pp. 1951–1955. https://doi.org/10.1166/jnn.2010.2062
Do, J.L. and Friščić, T., Mechanochemistry: A force of synthesis, ACS Cent. Sci., 2017, vol. 3, no. 1, pp. 13−19. https://doi.org/10.1021/acscentsci.6b00277
Huang, Z., Cui, F., Xue, J., Zuo, J. Chen, J., and Xia, C., Synthesis and structural characterization of silica dispersed copper nanomaterials with unusual thermal stability prepared by precipitation-gel method, J. Phys. Chem., 2010, vol. 114, no. 39, pp. 16104–16113. https://doi.org/10.1021/jp101136x
Liu, Y., Chi, W., Zhao, D., Liu, H., and Deng, Y., Molecular-cage method: An improvement of the precipitation method in synthesizing nanoparticles, Ind. Eng. Chem. Res., 2016, vol. 55, no. 30, pp. 8403–8408. https://doi.org/10.1021/acs.iecr.6b01714
Lin, S., Lin, K., Lu, K. D., and Liu, Z., Preparation of uniform magnetic iron oxide nanoparticles by co-precipitation in a helical module microchannel reactor, J. Environ. Chem. Eng., 2017, vol. 5, no. 1, pp. 303–309. https://doi.org/10.1016/j.jece.2016.12.011
Danks, A.E., Hal, S.R., and Schnepp, Z., The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis, Mater. Horiz., 2016, vol. 3, no. 2, pp. 91–112. https://doi.org/10.1039/C5MH00260E
Tseng, T.K., Lin, Y.S., Chen, Y.J., and Chu, H., A review of photocatalysts prepared by sol-gel method for VOCs removal, Int. J. Mol. Sci., 2010, vol. 11, no. 6, pp. 2336–2361. https://doi.org/10.3390/ijms11062336
Kumar, A., Yadav, N., Bhatt, M., Mishra, N.K., Chaudhary, P., and Singh, R., Sol-gel derived nanomaterials and their applications: A Review, Res.J. Chem. Sci., 2015, vol. 5, no. 12, pp. 98–105.
Aruna, S.T. and Mukasyan, A.S., Combustion synthesis and nanomaterials, Curr. Opin. Solid State Mater. Sci., 2008, vol. 12, pp. 44–50. https://doi.org/10.1016/j.cossms.2008.12.002
Varma, A., Mukasyan, A.S., Rogachev, A.S., and Manukyan, K.V., Solution combustion synthesis of nanoscale materials, Chem. Rev., 2016, vol. 116, no. 23, pp. 14493–14586. https://doi.org/10.1021/acs.chemrev.6b00279
Nersisyan, H.H., Lee, J.H., Kim, H.Y., Ryu, S.S., and Kim, B.U., Morphological diversity of AlN nano- and microstructures: Synthesis, growth orientations and theoretical modelling, Int. Mater. Rev., https://doi.org/10.1080/09506608.2019.1641651
Li, S., Ren, Y., Biswas, P., and Tse, S.D., Flame aerosol synthesis of nanostructured materials and functional devices, Prog. Energ. Combust. Sci., 2016, vol. 55, pp. 1–59. https://doi.org/10.1016/j.pecs.2016.04.002
Mohanty, U.S., Electrodeposition: A versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals, J. Appl. Chem., 2011, vol. 41, no. 3, pp. 257–270. https://doi.org/10.1007/s10800-010-0234-3
Gurrappa, I. and Binder, L., Electrodeposition of nanostructured coatings and their characterization: A review, Sci. Technol. Adv. Mater., 2008, vol. 9, no. 4, 043001. https://doi.org/10.1088/1468-6996/9/4/043001
Liu, X., Liu, Z., Lu, J., Wu, X., Xu, B., and Chu, W., Electrodeposition preparation of Ag nanoparticles loaded TiO2 nanotube arrays with enhanced photocatalytic performance, Appl. Surf. Sci., 2014, vol. 288, pp. 513–517. https://doi.org/10.1016/j.apsusc.2013.10.062
Kim, K.H., Lee, D.J., Cho, K.M., Kim, S.J., Park, J.K. and Jung, H.T., Complete magnesiothermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles, Sci. Rep., 2015, vol. 11, 9014. https://doi.org/10.1038/srep09014
Sun, L., Su, T., Xu, L., and Du, H.B., Preparation of uniform Si nanoparticles for high-performance Li-ion battery anodes, Phys. Chem. Chem. Phys., 2016, vol. 18, no. 3, pp. 1521–1525. https://doi.org/10.1039/C5CP06585B
Torabi, O., Naghibi, S., Golabgir, M.H., and Jamshidi, A., Mechanochemical synthesis of high crystalline cerium hexaboride nanoparticles from CeO2–B2O3–Mg ternary system, J. Chin. Chem. Soc., 2016, vol. 63, pp. 379–384. https://doi.org/10.1002/jccs.201500479
Nersisyan, H.H., Won, H.I., Won, C.W., Jo, A., and Kim, J.H., Direct magnesiothermic reduction of titanium dioxide to titanium powder through combustion synthesis, Chem. Eng. J., 2014, vol. 235, pp. 67–74. https://doi.org/10.1016/j.cej.2013.08.104
Deguchi, M., Yasuda, N., Zhu, C., Okinaka, N., and Akiyama, T., Combustion synthesis of TiFe by utilizing magnesiothermic reduction, J. Alloys Comp., 2015, vol. 622, pp. 102–107. https://doi.org/10.1016/j.jallcom.2014.10.051
An, W., Su, J., Chen, Z., Gao, B., Zhang, X., Peng, X., Peng, S., Fu, J., and Chu, P.K., Low-temperature synthesis of mesoporous SiC hollow spheres by magnesiothermic reduction, J. Am. Ceram. Soc., 2016, vol. 99, no. 6, pp. 1859–1861. https://doi.org/10.1111/jace.14208
Nersisyan, H.H., Yoo, B.U., Joo, S.H., Lee, K.H., and Lee, J.H., Polymer assisted approach to two-dimensional (2D) nanosheets of B4C, Chem. Eng. J., 2015, vol. 281, pp. 218–226. https://doi.org/10.1016/j.cej.2015.06.100
Nersisyan, H.H., Lee, T.H., Lee, K.H., An, Y.S., Lee, J.S., and Lee, J.H., Few-atomic-layer boron nitride nanosheets synthesized in solid thermal waves, RSC Adv., 2015, vol. 5, no. 12, pp. 8579–8584. https://doi.org/10.1039/C4RA10907D
Nersisyan, H.H., Lee, T.H., Lee, J.H., Suh, H., Kim, J.G., Son, H.T., and Kim, Y.H., NaF-assisted combustion synthesis of MoSi2 nanoparticles and their densification behavior, J. Phys. Chem. Sol., 2017, vol. 102, pp. 34–41. https://doi.org/10.1016/j.jpcs.2016.11.003
Liu, X., Giordano, C., and Antonietti, M., A molten-salt route for synthesis of Si and Ge nanoparticles: Chemical reduction of oxides by electrons solvated in salt melt, J. Mater. Chem., 2012, vol. 22, no. 12, 5454. https://doi.org/10.1039/C2JM15453F
Luo, W., Wang, X., Meyers, C., Wannenmacher, N., Sirisaksoontorn, W., Lerner, M.M., and Ji, X., Efficient fabrication of nanoporous Si and Si/Ge enabled by a heat scavenger in magnesiothermic reactions, Sci. Rep., 2012, vol. 3, 2222. https://doi.org/10.1038/srep02222
Kim, K.H., Lee, D.J., Cho, K.M., Kim, S.J., Park, J.K., and Jung, H.T., Complete magnesiothermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles, Sci. Rep., 2015, vol. 5. https://doi.org/10.1038/srep09014
Jimenez, J.A., Silicon as reducing agent for controlled production of plasmonic copper nanocomposite glasses: A Spectroscopic study, J. Electron. Mater., 2015, vol. 44, no. 11, pp. 4418–4423. https://doi.org/10.1007/s11664-015-3969-0
Jamshidi, A., Nourbakhsh, A.A., Jafari, M., and Naghibi, S., Combination of mechanical activation and silicothermal reduction, and nitridation process to form X-sialon by using andalusite precursor, Mol. Cryst. Liq. Cryst., 2012, vol. 555, no. 1, pp. 112–120. https://doi.org/10.1080/15421406.2012.635082
Sharifian, G.H. and Saidi, A., Silicothermic production and characterization of FeSiNi/SiO2 magnetic nanocomposite via mechanical alloying, J. Adv. Mater. Process., 2014, vol. 2, no. 4, pp. 49–54.
Nersisyan, H.H., Lee, S.H., Choi, J.H., Yoo, B.U, Suh, H., Kim, J.G., and Lee, J.H., Hierarchically porous carbon nanosheets derived from alkali metal carbonates and their capacitance in alkaline electrolytes, Mater. Chem. Phys., 2018, vol. 207, pp. 513–521. https://doi.org/10.1016/j.matchemphys.2018.01.010
Shyriaev, A.A., Thermodynamics of SHS processes: Advanced approach, Int. J. Self-Propag. High-Temp. Synth., 1995, vol. 4, no.4, pp. 351–362.
Lin, H., Gerbec, J.A., Sushchikh, M., and McFarland, E.W., Synthesis of amorphous silicon carbide nanoparticles in a low temperature low pressure plasma reactor, Nanotechnologies, 2008, vol. 19, no. 32, 325601. https://doi.org/10.1088/0957-4484/19/32/325601
An, K.H., Kim, W.S., Park, Y.S., Moon, J.M., Bae, D.J., Lim, S.C., Lee, Y.S., and Lee, Y.H., Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes, Adv. Funct. Mater., 2001, vol. 11, no. 5, pp. 387–392. https://doi.org/10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G
Kim, C., Ngoc, B.T.N., Yang, K.S., Kojima, M., Kim, Y.A., Kim, Y.J., Endo, M., and Yang, S.C., Self-sustained thin webs consisting of porous carbon nanofibers for supercapacitors via the electrospinning of polyacrylonitrile solutions containing zinc chloride, Adv. Mater., 2007, vol. 19, no. 17, pp. 2341–2346. https://doi.org/10.1002/adma.200602184
Chang, X., Xu, B., Hong, C., Han, J., Qin, F., Han, W., Cheng, H., Liu, C., and He, R., Carbon-bonded carbon fiber composites containing uniformly distributed silicon carbide, RSC Adv., 2014, vol. 4, no. 13, pp. 6591–6596. https://doi.org/10.1039/C3RA44913K
Xiao, L., Yang, Y., Yin, J., Li, Q., and Zhang, L., Low temperature synthesis of flower-like ZnMn2O4 superstructures with enhanced electrochemical lithium storage, J. Power Sources, 2009, vol. 194, no. 2, pp.1089–1093. https://doi.org/10.1016/j.powsour.2009.06.043
Sha, C., Zhang, F., Sun, H., Li, B., Li, Y., and Yang,Y., SiC/C composite mesoporous nanotubes as anode material for high-performance lithium-ion batteries, Mater. Lett., 2017, vol. 205, pp. 245–248. https://doi.org/10.1016/j.matlet.2017.06.021
Wang, C., Li, Y., Ostrikov, K., Yang, Y., and Zhang, W., Synthesis of SiC decorated carbonaceous nanorods and its hierarchical composites Si/SiC/C for high-performance lithium-ion batteries, J. Alloys Comp., 2015, vol. 646, pp. 966–972. https://doi.org/10.1016/j.jallcom.2015.06.177
Weast, R.C., CRC Handbook of Chemistry and Physics, Boca Raton: CRC Press, 1988.