Combustion Synthesis of C and SiC Nanoparticles from Na2CO3–Si Mixtures: Characterization and Electrochemical Performance

Hayk H. Nersisyan1, Y. J. Lee1, J. H. Lee1, Sang Mun Jeong2
1RASOM, Chungnam National University, Yuseong-gu, Republic of Korea
2Department of Chemical Engineering, Chungbuk National University, Chungbuk, Republic of Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bouchat, V., Feron, O., Gallez, B., Masereel, B., Michiels, C., Borght, T.V., Rossi, F., and Lucas, S., Carbon nanoparticles synthesized by sputtering and gas condensation inside a nanocluster source of fixed dimension, Surf. Coat. Technol. 2011, vol. 205, no. S2, pp. 577–S581. https://doi.org/10.1016/j.surfcoat.2011.03.055

Swihart, M. T., Vapor-phase synthesis of nanoparticles, Curr. Opin. Colloid Interf. Sci., 2003, vol. 3, pp. 127–133. https://doi.org/10.1016/S1359-029403.00007-4

Variava, M.F., Church, T.L., Husin, A., Harris, A. T., and Minett, A.I., Simple gas-solid route to functionalize ordered carbon, ACS Appl. Mater. Interf., 2014, vol. 6, no. 4, pp. 2910–2916. https://doi.org/10.1021/am405484g

Magrez, A., Seo, J.W., Smajda, R., Mionić, M., and Forró, L., Catalytic CVD synthesis of carbon nanotubes: Towards high yield and low-temperature growth, Materials, 2010, vol. 3, no. 11, pp. 4871–4891. https://doi.org/10.3390/ma3114871

Elliott, J.M., Shibuta, Y., Amara, H., Bichara, C., and Neyts, E.C., Atomistic modeling of CVD synthesis of carbon nanotubes and graphene, Nanoscale, 2013, vol. 5, pp. 6662–6676. https://doi.org/10.1039/C3NR01925J

Liu, R., Liu, M., and Chang, J., Large-scale synthesis of monodisperse SiC nanoparticles with adjustable size, stoichiometric ratio and properties by fluidized bed chemical vapor deposition, J. Nanopart. Res., 2017, vol. 19, p. 26. https://doi.org/10.1007/s11051-016-3737-y

Tong, L. and Reddy, R. G., Thermal plasma synthesis of SiC nano-powders/nano-fibers, Mater. Res. Bull., 2006, vol. 41, pp. 2303–2310. https://doi.org/10.1016/j.materresbull.2006.04.021

Xing, T., Sunarso, J., Yang, W., Yin, Y., Glushenkov, A.M., Li, L.H., Howlett, P.C., and Chen, Y., Ball milling: A green mechanochemical approach for synthesis of nitrogen doped carbon nanoparticles, Nanoscale, 2013, vol. 5, pp. 7970–7976. https://doi.org/10.1039/C3NR02328A

Xu, C., De, S., Balu, A.M., Ojeda, M., and Luque, R., Mechanochemical synthesis of advanced nanomaterials for catalytic application, Chem. Commun., 2015, vol. 51, pp. 6698–6713. https://doi.org/10.1039/C4CC09876E

Zhang, G., Wei, G., Zheng, K., Li, L., Xu, D., Wang, D., Xue, Y., and Su, W., The synthesis of beta-SiC nanoparticles by high-energy mechanical ball milling and their photoluminescence properties, J. Nanosci. Nanotechnol., 2010, vol. 10, pp. 1951–1955. https://doi.org/10.1166/jnn.2010.2062

Do, J.L. and Friščić, T., Mechanochemistry: A force of synthesis, ACS Cent. Sci., 2017, vol. 3, no. 1, pp. 13−19. https://doi.org/10.1021/acscentsci.6b00277

Huang, Z., Cui, F., Xue, J., Zuo, J. Chen, J., and Xia, C., Synthesis and structural characterization of silica dispersed copper nanomaterials with unusual thermal stability prepared by precipitation-gel method, J. Phys. Chem., 2010, vol. 114, no. 39, pp. 16104–16113. https://doi.org/10.1021/jp101136x

Liu, Y., Chi, W., Zhao, D., Liu, H., and Deng, Y., Molecular-cage method: An improvement of the precipitation method in synthesizing nanoparticles, Ind. Eng. Chem. Res., 2016, vol. 55, no. 30, pp. 8403–8408. https://doi.org/10.1021/acs.iecr.6b01714

Lin, S., Lin, K., Lu, K. D., and Liu, Z., Preparation of uniform magnetic iron oxide nanoparticles by co-precipitation in a helical module microchannel reactor, J. Environ. Chem. Eng., 2017, vol. 5, no. 1, pp. 303–309. https://doi.org/10.1016/j.jece.2016.12.011

Danks, A.E., Hal, S.R., and Schnepp, Z., The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis, Mater. Horiz., 2016, vol. 3, no. 2, pp. 91–112. https://doi.org/10.1039/C5MH00260E

Tseng, T.K., Lin, Y.S., Chen, Y.J., and Chu, H., A review of photocatalysts prepared by sol-gel method for VOCs removal, Int. J. Mol. Sci., 2010, vol. 11, no. 6, pp. 2336–2361. https://doi.org/10.3390/ijms11062336

Kumar, A., Yadav, N., Bhatt, M., Mishra, N.K., Chaudhary, P., and Singh, R., Sol-gel derived nanomaterials and their applications: A Review, Res.J. Chem. Sci., 2015, vol. 5, no. 12, pp. 98–105.

Aruna, S.T. and Mukasyan, A.S., Combustion synthesis and nanomaterials, Curr. Opin. Solid State Mater. Sci., 2008, vol. 12, pp. 44–50. https://doi.org/10.1016/j.cossms.2008.12.002

Varma, A., Mukasyan, A.S., Rogachev, A.S., and Manukyan, K.V., Solution combustion synthesis of nanoscale materials, Chem. Rev., 2016, vol. 116, no. 23, pp. 14493–14586. https://doi.org/10.1021/acs.chemrev.6b00279

Nersisyan, H.H., Lee, J.H., Kim, H.Y., Ryu, S.S., and Kim, B.U., Morphological diversity of AlN nano- and microstructures: Synthesis, growth orientations and theoretical modelling, Int. Mater. Rev., https://doi.org/10.1080/09506608.2019.1641651

Li, S., Ren, Y., Biswas, P., and Tse, S.D., Flame aerosol synthesis of nanostructured materials and functional devices, Prog. Energ. Combust. Sci., 2016, vol. 55, pp. 1–59. https://doi.org/10.1016/j.pecs.2016.04.002

Mohanty, U.S., Electrodeposition: A versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals, J. Appl. Chem., 2011, vol. 41, no. 3, pp. 257–270. https://doi.org/10.1007/s10800-010-0234-3

Gurrappa, I. and Binder, L., Electrodeposition of nanostructured coatings and their characterization: A review, Sci. Technol. Adv. Mater., 2008, vol. 9, no. 4, 043001. https://doi.org/10.1088/1468-6996/9/4/043001

Liu, X., Liu, Z., Lu, J., Wu, X., Xu, B., and Chu, W., Electrodeposition preparation of Ag nanoparticles loaded TiO2 nanotube arrays with enhanced photocatalytic performance, Appl. Surf. Sci., 2014, vol. 288, pp. 513–517. https://doi.org/10.1016/j.apsusc.2013.10.062

Kim, K.H., Lee, D.J., Cho, K.M., Kim, S.J., Park, J.K. and Jung, H.T., Complete magnesiothermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles, Sci. Rep., 2015, vol. 11, 9014. https://doi.org/10.1038/srep09014

Sun, L., Su, T., Xu, L., and Du, H.B., Preparation of uniform Si nanoparticles for high-performance Li-ion battery anodes, Phys. Chem. Chem. Phys., 2016, vol. 18, no. 3, pp. 1521–1525. https://doi.org/10.1039/C5CP06585B

Torabi, O., Naghibi, S., Golabgir, M.H., and Jamshidi, A., Mechanochemical synthesis of high crystalline cerium hexaboride nanoparticles from CeO2–B2O3–Mg ternary system, J. Chin. Chem. Soc., 2016, vol. 63, pp. 379–384. https://doi.org/10.1002/jccs.201500479

Nersisyan, H.H., Won, H.I., Won, C.W., Jo, A., and Kim, J.H., Direct magnesiothermic reduction of titanium dioxide to titanium powder through combustion synthesis, Chem. Eng. J., 2014, vol. 235, pp. 67–74. https://doi.org/10.1016/j.cej.2013.08.104

Deguchi, M., Yasuda, N., Zhu, C., Okinaka, N., and Akiyama, T., Combustion synthesis of TiFe by utilizing magnesiothermic reduction, J. Alloys Comp., 2015, vol. 622, pp. 102–107. https://doi.org/10.1016/j.jallcom.2014.10.051

An, W., Su, J., Chen, Z., Gao, B., Zhang, X., Peng, X., Peng, S., Fu, J., and Chu, P.K., Low-temperature synthesis of mesoporous SiC hollow spheres by magnesiothermic reduction, J. Am. Ceram. Soc., 2016, vol. 99, no. 6, pp. 1859–1861. https://doi.org/10.1111/jace.14208

Nersisyan, H.H., Yoo, B.U., Joo, S.H., Lee, K.H., and Lee, J.H., Polymer assisted approach to two-dimensional (2D) nanosheets of B4C, Chem. Eng. J., 2015, vol. 281, pp. 218–226. https://doi.org/10.1016/j.cej.2015.06.100

Nersisyan, H.H., Lee, T.H., Lee, K.H., An, Y.S., Lee, J.S., and Lee, J.H., Few-atomic-layer boron nitride nanosheets synthesized in solid thermal waves, RSC Adv., 2015, vol. 5, no. 12, pp. 8579–8584. https://doi.org/10.1039/C4RA10907D

Nersisyan, H.H., Lee, T.H., Lee, J.H., Suh, H., Kim, J.G., Son, H.T., and Kim, Y.H., NaF-assisted combustion synthesis of MoSi2 nanoparticles and their densification behavior, J. Phys. Chem. Sol., 2017, vol. 102, pp. 34–41. https://doi.org/10.1016/j.jpcs.2016.11.003

Liu, X., Giordano, C., and Antonietti, M., A molten-salt route for synthesis of Si and Ge nanoparticles: Chemical reduction of oxides by electrons solvated in salt melt, J. Mater. Chem., 2012, vol. 22, no. 12, 5454. https://doi.org/10.1039/C2JM15453F

Luo, W., Wang, X., Meyers, C., Wannenmacher, N., Sirisaksoontorn, W., Lerner, M.M., and Ji, X., Efficient fabrication of nanoporous Si and Si/Ge enabled by a heat scavenger in magnesiothermic reactions, Sci. Rep., 2012, vol. 3, 2222. https://doi.org/10.1038/srep02222

Kim, K.H., Lee, D.J., Cho, K.M., Kim, S.J., Park, J.K., and Jung, H.T., Complete magnesiothermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles, Sci. Rep., 2015, vol. 5. https://doi.org/10.1038/srep09014

Jimenez, J.A., Silicon as reducing agent for controlled production of plasmonic copper nanocomposite glasses: A Spectroscopic study, J. Electron. Mater., 2015, vol. 44, no. 11, pp. 4418–4423. https://doi.org/10.1007/s11664-015-3969-0

Jamshidi, A., Nourbakhsh, A.A., Jafari, M., and Naghibi, S., Combination of mechanical activation and silicothermal reduction, and nitridation process to form X-sialon by using andalusite precursor, Mol. Cryst. Liq. Cryst., 2012, vol. 555, no. 1, pp. 112–120. https://doi.org/10.1080/15421406.2012.635082

Sharifian, G.H. and Saidi, A., Silicothermic production and characterization of FeSiNi/SiO2 magnetic nanocomposite via mechanical alloying, J. Adv. Mater. Process., 2014, vol. 2, no. 4, pp. 49–54.

Nersisyan, H.H., Lee, S.H., Choi, J.H., Yoo, B.U, Suh, H., Kim, J.G., and Lee, J.H., Hierarchically porous carbon nanosheets derived from alkali metal carbonates and their capacitance in alkaline electrolytes, Mater. Chem. Phys., 2018, vol. 207, pp. 513–521. https://doi.org/10.1016/j.matchemphys.2018.01.010

Shyriaev, A.A., Thermodynamics of SHS processes: Advanced approach, Int. J. Self-Propag. High-Temp. Synth., 1995, vol. 4, no.4, pp. 351–362.

Lin, H., Gerbec, J.A., Sushchikh, M., and McFarland, E.W., Synthesis of amorphous silicon carbide nanoparticles in a low temperature low pressure plasma reactor, Nanotechnologies, 2008, vol. 19, no. 32, 325601. https://doi.org/10.1088/0957-4484/19/32/325601

An, K.H., Kim, W.S., Park, Y.S., Moon, J.M., Bae, D.J., Lim, S.C., Lee, Y.S., and Lee, Y.H., Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes, Adv. Funct. Mater., 2001, vol. 11, no. 5, pp. 387–392. https://doi.org/10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G

Kim, C., Ngoc, B.T.N., Yang, K.S., Kojima, M., Kim, Y.A., Kim, Y.J., Endo, M., and Yang, S.C., Self-sustained thin webs consisting of porous carbon nanofibers for supercapacitors via the electrospinning of polyacrylonitrile solutions containing zinc chloride, Adv. Mater., 2007, vol. 19, no. 17, pp. 2341–2346. https://doi.org/10.1002/adma.200602184

Chang, X., Xu, B., Hong, C., Han, J., Qin, F., Han, W., Cheng, H., Liu, C., and He, R., Carbon-bonded carbon fiber composites containing uniformly distributed silicon carbide, RSC Adv., 2014, vol. 4, no. 13, pp. 6591–6596. https://doi.org/10.1039/C3RA44913K

Xiao, L., Yang, Y., Yin, J., Li, Q., and Zhang, L., Low temperature synthesis of flower-like ZnMn2O4 superstructures with enhanced electrochemical lithium storage, J. Power Sources, 2009, vol. 194, no. 2, pp.1089–1093. https://doi.org/10.1016/j.powsour.2009.06.043

Sha, C., Zhang, F., Sun, H., Li, B., Li, Y., and Yang,Y., SiC/C composite mesoporous nanotubes as anode material for high-performance lithium-ion batteries, Mater. Lett., 2017, vol. 205, pp. 245–248. https://doi.org/10.1016/j.matlet.2017.06.021

Wang, C., Li, Y., Ostrikov, K., Yang, Y., and Zhang, W., Synthesis of SiC decorated carbonaceous nanorods and its hierarchical composites Si/SiC/C for high-performance lithium-ion batteries, J. Alloys Comp., 2015, vol. 646, pp. 966–972. https://doi.org/10.1016/j.jallcom.2015.06.177

Weast, R.C., CRC Handbook of Chemistry and Physics, Boca Raton: CRC Press, 1988.