Combustion Regime Monitoring by Flame Imaging and Machine Learning

С. С. Абдуракипов1,2, O. A. Gobyzov1,2, M. P. Tokarev1,2, В. М. Дулин1,2
1Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State University, Novosibirsk, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

S. M. Borzov, V. I. Kozik, O. I. Potaturkin, and N. N. Shushkov, “Optimization of Combustion Processes for Gaseous Hydrocarbons Through Variation of Fuel Mixture Content,” Teplofizika Aekomekhanika 11 (2), 309–315 (2004) [Thermophysics Aeromechanics, No. 2, 299–304 (2004)].

V. D. Antsygin, S. M. Borzov, S. T. Vas’kov, et al., “Combustion Optimization Based on Flame Parameters,” Avtometry, No. 5, 3–11 (1999).

A. González-Cencerrado, B. Pe˜na, and A. Gil, “Coal Flame Characterization by Means of Digital Image Processing in a Semi-Industrial Scale PF Swirl Burner,” Appl. Energy. 94 (C), 375–384 (2012).

A. González-Cencerrado, B. Pe˜na, and A. Gil, “Experimental Analysis of Biomass Co-Firing Flames in a Pulverized Fuel Swirl Burner Using a CCD Based Visualization System,” Fuel Process. Technol. 130, 299–310 (2015).

T. S. Draper, D. Zeltner, D. R. Tree, et al., “Two-Dimensional Flame Temperature and Emissivity Measurements of Pulverized Oxy-Coal Flames,” Appl. Energy. 95, 38–44 (2012).

I. Witten, E. Frank, M. Hall, and C. Pal, Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann, San Francisco, 2017).

M. T. Hagan, H. B. Demuth, M. H. Beale, and O. de Jesus, Neural Network Design (Martin Hagan, USA, 2014).

H. Aghdam and E. Heravi, Guide to Convolutional Neural Networks (Springer, 2017).

S. V. Alekseenko, V. M. Dulin, Y. S. Kozorezov, et al., “Flow Structure of Swirling Turbulent Propane Flames,” Flow, Turbulence Combustion 87 (4), 569–595 (2011).

L. J. P. Van der Maaten and G. E. Hinton, “Visualizing High-Dimensional Data Using t-SNE,” J. Mach. Learning Res. 9, 2579–2605 (2008).

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” in Proc. of the 25th Intern. Conf. on Neural Information Processing Systems, Nevada, USA, Dec. 3–6, 2012.

N. Srivastava, G. Hinton, A. Krizhevsky, et al., “Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” J. Mach. Learning Res. 15 (1), 1929–1958 (2014).