Combining shallow-water and analytical wake models for tidal array micro-siting

Journal of Ocean Engineering and Marine Energy - Tập 8 Số 2 - Trang 193-215 - 2022
Connor Jordan1, Davor Dundovic2, Anastasia K. Fragkou1, Georgios Deskos3, Daniel Coles4, Matthew D. Piggott2, Athanasios Angeloudis1
1School of Engineering, Institute for Infrastructure and the Environment, University of Edinburgh, Edinburgh, UK
2Department of Earth Science and Engineering, Imperial College London, London, UK
3National Wind Technology Center, National Renewable Energy Laboratory, Golden, CO, USA
4School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth, UK

Tóm tắt

Abstract

For tidal-stream energy to become a competitive renewable energy source, clustering multiple turbines into arrays is paramount. Array optimisation is thus critical for achieving maximum power performance and reducing cost of energy. However, ascertaining an optimal array layout is a complex problem, subject to specific site hydrodynamics and multiple inter-disciplinary constraints. In this work, we present a novel optimisation approach that combines an analytical-based wake model, FLORIS, with an ocean model, Thetis. The approach is demonstrated through applications of increasing complexity. By utilising the method of analytical wake superposition, the addition or alteration of turbine position does not require re-calculation of the entire flow field, thus allowing the use of simple heuristic techniques to perform optimisation at a fraction of the computational cost of more sophisticated methods. Using a custom condition-based placement algorithm, this methodology is applied to the Pentland Firth for arrays with turbines of $$3.05\,\hbox {m}/\hbox {s}$$ 3.05 m / s rated speed, demonstrating practical implications whilst considering the temporal variability of the tide. For a 24-turbine array case, micro-siting using this technique delivered an array 15.8% more productive on average than a staggered layout, despite flow speeds regularly exceeding the rated value. Performance was evaluated through assessment of the optimised layout within the ocean model that treats turbines through a discrete turbine representation. Used iteratively, this methodology could deliver improved array configurations in a manner that accounts for local hydrodynamic effects.

Từ khóa


Tài liệu tham khảo

Abolghasemi MA, Piggott MD, Spinneken J, Viré A, Cotter CJ, Crammond S (2016) Simulating tidal turbines with multi-scale mesh optimisation techniques. J Fluids Struct 66:69–90

Adcock TA, Draper S, Houlsby GT, Borthwick AG, Serhadlioǧu S (2013) The available power from tidal stream turbines in the Pentland Firth. Proc R Soc A Math Phys Eng Sci 469:20130072

Angeloudis A, Kramer SC, Avdis A, Piggott MD (2018) Optimising tidal range power plant operation. Appl Energy 212:680–690

Avdis A, Candy AS, Hill J, Kramer SC, Piggott MD (2018) Efficient unstructured mesh generation for marine renewable energy applications. Renew Energy 116:842–856

Bahaj AS, Molland AF, Chaplin JR, Batten WMJ (2007) Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renew Energy 32:407–426

Baker AL, Craighead RM, Jarvis EJ, Stenton HC, Angeloudis A, Mackie L, Avdis A, Piggott MD, Hill J (2020) Modelling the impact of tidal range energy on species communities. Ocean Coast Manag 193:105221

Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Dalcin L, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Rupp K, Smith BF, Zampini S, Zhang H, Zhang H (2016) PETSc users manual. Technical report ANL-95/11—revision 3.7, Argonne National Laboratory

Bang-Jensen J, Gutin G, Yeo A (2004) When the greedy algorithm fails. Discrete Optim 1(2):121–127

Barnett GL, Funke SW, Piggott MD (2014) Hybrid global-local optimisation algorithms for the layout design of tidal turbine arrays. arXiv:1410.2476

Bastankhah M, Porté-Agel F (2014) A new analytical model for wind-turbine wakes. Renew Energy 70:116–123

Branlard E, Meyer Forsting AR (2020) Assessing the blockage effect of wind turbines and wind farms using an analytical vortex model. Wind Energy 23(11):2068–2086

Chamorro LP, Porté-Agel F (2009) A wind-tunnel investigation of wind-turbine wakes: Boundary-Layer turbulence effects. Bound Layer Meteorol 132(1):129–149

Chen L, Bonar PA, Vogel CR, Adcock TA (2019) Local blockage effects for idealised turbines in tidal channels. In: Proceedings of the international conference on offshore mechanics and arctic engineering—OMAE 10, Glasgow, UK, pp 1–10

Chozas JF (2015) International levelised cost of energy for ocean energy technologies. Technical Report May, Ocean Energy Systems

Churchfield MJ, Li Y, Moriarty PJ (2013) A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines. Philos Trans R Soc Lond A Math Phys Eng Sci 371:20120421

Coles D, Angeloudis A, Greaves D, Hastie G, Lewis M, Mackie L, McNaughton J, Miles J, Neill S, Piggott M, Risch D, Scott B, Sparling C, Stallard T, Thies P, Walker S, White D, Willden R, Williamson B (2021) A review of the UK and British channel islands practical tidal stream energy resource. Proc R Soc A Math Phys Eng Sci 477(2255):20210469

Coles D, Blunden L, Bahaj A (2017) Assessment of the energy extraction potential at tidal sites around the channel islands. Energy 124:171–186

Coles D, Greenwood C, Vogler A, Walsh T, Taaffe D (2018) Assessment of the turbulent flow upstream of the Meygen phase 1A tidal stream turbines. In: 4th Asian wave and tidal energy conference, Taipei, Taiwan

Coles DS, Blunden LS, Bahaj AS (2020) The energy yield potential of a large tidal stream turbine array in the Alderney race. Philos Trans R Soc A Math Phys Eng Sci 378(2178):20190502

Coles DS, Walsh T (2019) Mechanisms for reducing the cost of tidal stream energy. In: 13th European wave and tidal energy conference, Naples, Italy

Crespo A, Hernández J (1996) Turbulence characteristics in wind-turbine wakes. J Wind Eng Ind Aerodyn 61(1):71–85

Culley DM, Funke SW, Kramer SC, Piggott MD (2016) Integration of cost modelling within the micro-siting design optimisation of tidal turbine arrays. Renew Energy 85:215–227

De Dominicis M, Wolf J, O’Hara Murray R (2018) Comparative effects of climate change and tidal stream energy extraction in a shelf sea. J Geophys Res Oceans 123(7):5041–5067

Deskos G, Abolghasemi MA, Piggott MD (2017) Wake predictions from two turbine models using mesh-optimisation techniques. In: Lewis A (ed) Proceedings of the twelfth European wave and tidal energy conference, University College Cork, Ireland. EWTEC. ISSN: 2309-1983

Deskos G, Laizet S, Palacios R (2020) Winc3d: a novel framework for turbulence-resolving simulations of wind farm wake interactions. Wind Energy 23(3):779–794

Divett T, Vennell R, Stevens C (2016) Channel-scale optimisation and tuning of large tidal turbine arrays using LES with adaptive mesh. Renew Energy 86:1394–1405

Draper S, Adcock TA, Borthwick AG, Houlsby GT (2014) Estimate of the tidal stream power resource of the Pentland Firth. Renew Energy 63:650–657

du Feu R, Funke S, Kramer S, Culley D, Hill J, Halpern B, Piggott M (2017) The trade-off between tidal-turbine array yield and impact on flow: a multi-objective optimisation problem. Renew Energy 114:1247–1257

du Feu RJ, Funke SW, Kramer SC, Hill J, Piggott J (2019) The trade-off between tidal-turbine array yield and environmental impact: a habitat suitability modelling approach. Renew Energy 143:390–403

Dufresne N, Wosnik M (2013) Velocity deficit and swirl in the turbulent wake of a wind turbine. Mar Technol Soc J 47(4):193–205

Edina Digimap Service (2020) Hydrospatial one, gridded bathymetry. http://digimap.edina.ac.uk/marine/. SeaZone Solutions Ltd. Accessed 2020

Egbert GD, Erofeeva SY (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Technol 19(2):183–204

Fairley I, Masters I, Karunarathna H (2015) The cumulative impact of tidal stream turbine arrays on sediment transport in the Pentland Firth. Renew Energy 80:755–769

Fleming PA, Ning A, Gebraad PM, Dykes K (2016) Wind plant system engineering through optimization of layout and yaw control. Wind Energy 19(2):329–344

Funke S, Farrell P, Piggott M (2014) Tidal turbine array optimisation using the adjoint approach. Renew Energy 63:658–673

Funke SW, Kramer SC, Piggott MD (2016) Design optimisation and resource assessment for tidal-stream renewable energy farms using a new continuous turbine approach. Renew Energy 99:1046–1061

Garrett C, Cummins P (2007) The efficiency of a turbine in a tidal channel. J Fluid Mech 588:243–251

Gebraad PMO, Teeuwiise FW, van Wingerden JW, Fleming PA, Ruben SD, Marden JR, Pao LY (2014) Wind plant power optimization through yaw control using a parametric model for wake effects-a CFD simulation study. Wind Energy 19(1):95–114

González-Gorbeña E, Qassim RY, Rosman PC (2018) Multi-dimensional optimisation of Tidal Energy Converters array layouts considering geometric, economic and environmental constraints. Renew Energy 116:647–658

Goss Z, Coles D, Piggott M (2021a) Economic analysis of tidal stream turbine arrays: a review

Goss ZL, Coles DS, Kramer SC, Piggott MD (2021) Efficient economic optimisation of large-scale tidal stream arrays. Appl Energy 295:116975

Goss ZL, Coles DS, Piggott MD (2020) Identifying economically viable tidal sites within the Alderney Race through optimization of levelized cost of energy: economic viability of the Alderney Race. Philos Trans R Soc A Math Phys Eng Sci 378(2178)

Harcourt F, Angeloudis A, Piggott MD (2019) Utilising the flexible generation potential of tidal range power plants to optimise economic value. Appl Energy 237:873–884

Hardwick J, Ashton I, Johanning L (2015) Field characterisation of currents and near surface eddies in the Pentland Firth. In: Proceedings of the 4th Oxford tidal energy workshop, March 2015, Oxford, UK, pp 34–35

Jensen NO (1983) A note on wind generator interaction. Technical report, Risø National Laboratory, Roskilde

Karna T, de Brye B, Gourgue O, Lambrechts J, Comblen R, Legat V, Deleersnijder E (2011) A fully implicit wetting–drying method for DG-FEM shallow water models, with an application to the Scheldt Estuary. Comput Methods Appl Mech Eng 200(5):509–524

Kärnä T, Kramer SC, Mitchell L, Ham DA, Piggott MD, Baptista AM (2018) Thetis coastal ocean model: discontinuous Galerkin discretization for the three-dimensional hydrostatic equations. Geosci Model Dev Discuss 2018:1–36

Katic I, Højstrup J, Jensen N (1987) A simple model for cluster efficiency publication. In: European wind energy association conference and exhibition, Rome, Italy

King RN, Dykes K, Graf P, Hamlington PE (2017) Optimization of wind plant layouts using an adjoint approach. Wind Energy Sci 2(1):115–131

Kraft D (1988) A software package for sequential quadratic programming. Technical report 28, Institut für Dynamik der Flugsysteme

Kramer SC, Piggott MD (2016) A correction to the enhanced bottom drag parameterisation of tidal turbines. Renew Energy 92:385–396

Lanzilao L, Meyers K (2021) A new wake-merging method for wind-farm power prediction in the presence of heterogeneous background velocity fields. Wind Energy 25(2):237–259

Lo Brutto OA, Thiébot J, Guillou SS, Gualous H (2016) A semi-analytic method to optimize tidal farm layouts—application to the Alderney Race (Raz Blanchard), France. Appl Energy 183:1168–1180

Machefaux E, Larsen GC, Leon JP (2015) Engineering models for merging wakes in wind farm optimization applications. J Phys Conf Ser 625(1):1–12

Mackie L, Evans PS, Harrold MJ, O’Doherty T, Piggott MD, Angeloudis A (2021) Modelling an energetic tidal strait: investigating implications of common numerical configuration choices. Appl Ocean Res 108(January):102494

Mackie L, Kramer SC, Piggott MD, Angeloudis A (2021) Assessing impacts of tidal power lagoons of a consistent design. Ocean Eng 240:109879

Martin-Short R, Hill J, Kramer S, Avdis A, Allison P, Piggott M (2015) Tidal resource extraction in the Pentland Firth, UK: potential impacts on flow regime and sediment transport in the inner sound of stroma. Renew Energy 76(Supplement C):596–607

Martin-Short R, Hill J, Kramer SC, Avdis A, Allison PA, Piggott MD (2015) Tidal resource extraction in the Pentland Firth, UK: potential impacts on flow regime and sediment transport in the Inner Sound of Stroma. Renew Energy 76:596–607

Nash S, O’Brien N, Olbert A, Hartnett M (2014) Modelling the far field hydro-environmental impacts of tidal farms—a focus on tidal regime, inter-tidal zones and flushing. Comput Geosci 71:20–27

Neill SP, Angeloudis A, Robins PE, Walkington I, Ward SL, Masters I, Lewis MJ, Piano M, Avdis A, Piggott MD et al (2018) Tidal range energy resource and optimization-past perspectives and future challenges. Renew energy 127:763–778

Neill SP, Hashemi MR, Lewis MJ (2014) Optimal phasing of the European tidal stream resource using the greedy algorithm with penalty function. Energy 73:997–1006

Niayifar A, Porté-Agel F (2016) Analytical modeling of wind farms: a new approach for power prediction. Energies 9(9):1–13

Nishino T, Willden RH (2012) Effects of 3-D channel blockage and turbulent wake mixing on the limit of power extraction by tidal turbines. Int J Heat Fluid Flow 37:123–135

Nishino T, Willden RH (2013) Two-scale dynamics of flow past a partial cross-stream array of tidal turbines. J Fluid Mech 730:220–244

NREL (2020) FLORIS. Version 2.2.0

O’Hara Murray R, Gallego A (2017) A modelling study of the tidal stream resource of the Pentland Firth, Scotland. Renew Energy 102:326–340

Ouro P, Nishino T (2021) Performance and wake characteristics of tidal turbines in an infinitely large array. J Fluid Mech 925:A30

Ouro P, Ramírez L, Harrold M (2019) Analysis of array spacing on tidal stream turbine farm performance using large-Eddy simulation. J Fluids Struct 91:102732

Phoenix A, Nash S (2019) Optimisation of tidal turbine array layouts whilst limiting their hydro-environmental impact. J Ocean Eng Mar Energy 5(3):251–266

Piggott MD, Kramer SC, Funke SW, Culley DM, Angeloudis A (2021) Optimization of marine renewable energy systems. In: Comprehensive renewable energy, 2nd edn. Elsevier

Rathgeber F, Ham DA, Mitchell L, Lange M, Luporini F, Mcrae ATT, Bercea G-T, Markall GR, Kelly PHJ (2016) Firedrake: automating the finite element method by composing abstractions. ACM Trans Math Softw 43(3):24:1-24:27

Robins PE, Neill SP, Lewis MJ, Ward SL (2015) Characterising the spatial and temporal variability of the tidal-stream energy resource over the northwest European shelf seas. Appl Energy 147:510–522

Sandoval J, Soto-Rivas K, Gotelli C, Escauriaza C (2021) Modeling the wake dynamics of a marine hydrokinetic turbine using different actuator representations. Ocean Eng 222(June 2020)

Schwedes T, Ham DA, Funke SW, Piggott MD (2017) An application: optimising the layout of tidal turbine arrays. In: Mesh dependence in PDE-constrained optimisation: an application in tidal turbine array layouts, chapter 3, 1st edn. Springer, Berlin, pp 79–107

SIMEC Atlantis Energy (2016) AR1500 tidal turbine brochure. https://www.atlantisresourcesltd.com/wp/wp-content/uploads/2016/08/AR1500-Brochure-Final-1.pdf. Accessed 16 Nov 2020

SIMEC Atlantis Energy (2020a) Meygen. https://simecatlantis.com/projects/meygen/. Accessed 16 Apr 2021

SIMEC Atlantis Energy (2020b) Tidal turbines. https://simecatlantis.com/services/turbines/. Accessed 18 Nov 2020

Singh A, Howard KB, Guala M (2014) On the homogenization of turbulent flow structures in the wake of a model wind turbine. Phys Fluids 26(2):025103

Smart G, Noonan M (2018) Tidal stream and wave energy cost reduction and industrial benefit: summary analysis. Technical report, ORE Catapult. https://ore.catapult.org.uk/app/uploads/2018/11/Tidal-Stream-and-Wave-Energy-Cost-Reduction-and-Industrial-Benefit.pdf. Accessed 14 Nov 2021

Stallard T, Collings R, Feng T, Whelan J (2013) Interactions between tidal turbine wakes: Experimental study of a group of three-bladed rotors. Philos Trans R Soc A Math Phys Eng Sci 371(1985)

Stallard T, Feng T, Stansby PK (2015) Experimental study of the mean wake of a tidal stream rotor in a shallow turbulent flow. J Fluids Struct 54:235–246

Stansby P, Stallard T (2016) Fast optimisation of tidal stream turbine positions for power generation in small arrays with low blockage based on superposition of self-similar far-wake velocity deficit profiles. Renew Energy 92:366–375

Stansby PK (2003) A mixing-length model for shallow turbulent wakes. J Fluid Mech 495:369–384

Thiébaut M, Filipot JF, Maisondieu C, Damblans G, Jochum C, Kilcher LF, Guillou S (2020) Characterization of the vertical evolution of the three-dimensional turbulence for fatigue design of tidal turbines: 3D turbulence for fatigue design of TEC. Philos Trans R Soc A Math Phys Eng Sci 378(2178)

Topper MB, Olson SS, Roberts JD (2021) On the benefits of negative hydrodynamic interactions in small tidal energy arrays. Appl Energy 297:117091

U.S. Energy Information Administration (2020) Levelized cost and levelized avoided cost of new generation resources in the annual energy outlook 2020. Technical report. U.S. Energy Information Administration

Vennell R (2011) Tuning tidal turbines in-concert to maximise farm efficiency. J Fluid Mech 671:587–604

Vennell R (2012) The energetics of large tidal turbine arrays. Renew Energy 48:210–219

Vennell R, Funke SW, Draper S, Stevens C, Divett T (2015) Designing large arrays of tidal turbines: a synthesis and review. Renew Sustain Energy Rev 41:454–472

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat İ, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P, SciPy 1.0 Contributors, (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17:261–272

Vouriot CV, Angeloudis A, Kramer SC, Piggott MD (2019) Fate of large-scale vortices in idealized tidal lagoons. Environ Fluid Mech 19(2):329-348

Wituła R, Słota D (2010) Cardano’s formula, square roots, Chebyshev polynomials and radicals. J Math Anal Appl 363(2):639–647

Zhang J, Zhang C, Angeloudis A, Kramer SC, He R, Piggott MD (2022) Interactions between tidal stream turbine arrays and their hydrodynamic impact around Zhoushan island, China. Ocean Eng 246:110431

Zong L, Nepf H (2012) Vortex development behind a finite porous obstruction in a channel. J Fluid Mech 691:368–391